

7300 SERIES FOUNDATION FIELDBUS OPERATING MANUAL

(Non-Incendive and Intrinsically Safe Devices)

юм: Tech-485		Revision: 5.0	
Prepared By: W. Ferraz, M.Twardowski, F. Oster	Date: 9/7/12	Drafting Work Order: 19944	ECN: 12076
Reviewed By: W. Ferraz	Date:10/10/12	Approved By: F. Oster	Date:10/10/12
This IOM contains confidential information and is issued in confidence on the condition that it be returned on demand and not be copied, reproduced, disclosed to others or used in manufacture of the subject matter thereof without the written consent of Westlock Controls			

WESTLOCK CONTROLS CORPORATION

280N MIDLAND AVENUE, Ste. 258 SADDLE BROOK, NJ 07663 TEL: 201-794-7650 FAX: 201-794-0913

Revision History

Revision 1.0

26 November, 2001 Initial Release

Revision 2.0

28 January, 2003 Revised Sections 2, 4, 6-8, 18 – 19 and 21 to reflect hardware and firmware changes integral to the Intrinsically Safe EL- – 4.4 and 10 added. Language modified and graphics added in various sections for clarity.

Revision 3.0

18 October, 2005 New Tech number issued for document to reflect complete revision to comply with new format. Language and graphics revised in various sections for clarity.

Revision 4.0

30 November, 2010 Added Appendix F for Parsons. Text modified for clarity.

Revision 5.0

2 February, 2012 As per ECN# 12076

Westlock Controls Offices

USA Westlock Controls Corp. 280 North Midland Ave. Ste 258, Saddle Brook, NJ 07663 Phone: (201) 794-7650 •Fax: (201) 794-0913 Email: westlockinfo@westlockcontrols.com Internet http://www.westlockcontrols.com

Europe Westlock Controls UK Chapman Way, Tunbridge Wells Kent, England TN23EF Phone: 011-44-189-251-6277 •Fax: 011-44-189-251-6279 Email: <u>sales@westlockuk.com</u> Internet: <u>http://www.westlockuk.com</u>

South America

Westlock Equipamentos de Controle Ltda.

Sales: Al. Araguaia, 2044 – Sl. 1101, Bloco B Edifício CEA – Alphaville Barueri – São Paulo – Brazil 06455-000 Tel: + 55 11 2588-1400 Fax: + 55 11 2588-1410 Email: <u>comercial@westlock.com.br</u> Internet: <u>http://www.westlock.com.br</u> Operations: Av. Antonio Bardella, 3000 Galpões 2A e 2B – Alto da Boa Vista Sorocaba – São Paulo – Brazil 18085-852 Tel: + 55 15 2102-7400 Fax: + 55 15 2102-7400

Table of Contents

Document and Foundation Fieldbus Overview	
1.1 Scope of Manual	9
1.2 Acronyms, Abbreviations and Symbol Definitions	10
Table 1-Acronyms	10
Table 2-Abbreviations	10
1.3 Symbols	11
1.5 Westlock FOUNDATION [™] Fieldbus FPAC	12
1.5.1 LED Status Indicators	12
1.5.2 FPAC Module Layout (no. EL-40133 regular canister or EL-40137 explosion-proof canister)	12
1.6 Device Features	13
1.6.1 Auxiliary Inputs	13
1.6.2 Predictive Alarming	13
1.6.3 Preventative Maintenance Alarming	13
1.6.4 Maskable Signal	14
1.7 Fieldbus FOUNDATIONTM Conformance Documentation, CFF and DD Availability	14
Table 4 – Fieldbus Foundation TM Conformance Documentation	14
1.8 Host System Compatibility Documentation	15
1.9 Non-incendive and Intrinsically Safe Design Criteria and Agency Approvals	15
Table 5 -Hazardous Ratings Error! Bookmark not de	fined.
1.9.1 Entity and FISCO Parameters	16
Table 6 - Entity and FISCO Parameters	16
1.10 Device Specifications	16
1.11 Bibliography	16
2.1 Mounting	17
2.2 Pneumatic Connections	17

2.2.1 Tubing and Fittings	17
2.2.2 Porting	
2.2.3 Maintenance	
2.2.4 Pneumatic Specifications	
Table 7 -Pneumatic Specifications	
2.3 Switch Adjustment	
2.3.1 Position Limit Sensor Calibration Switch	
2.3.2 Position Limit Sensor Calibration	19
2.4 Wiring Instructions	20
2.4.1 FPAC Connector Pin Out	22
2.4.2 FPAC Module Terminations and LED Locations	23
3.1 Quick Configuration	23
3.2 Hardware Write Protection	23
3.3 Channels	24
3.3.1 Discrete Input Channels	24
3.3.2 Discrete Output Channels	24
3.3.3 Channel Errors	25
3.3.4 Multi-State Channels	25
3.4 Using Two Valves	25
3.5 Global Block Parameters	25
3.5.1 Mode Parameter	25
Table 8 -Mode Enumerations	26
3.5.2 Status	26
Table 9 -block_err Enumerations	26
3.6 Resource Block Configuration	27
3.6.1 Resource Block Supported Modes	27
Table 10-RB -Supported Modes	27

3.6.2 Discrete Readback Parameter	27
3.6.3 Fault State Parameter	27
3.6.4 Resource State Parameter	28
Table 11-RB State Enumerations	28
3.7 Transducer Block Configuration	29
3.7.1 Transducer Block Supported Modes	29
Table 12-TB -Supported Modes	29
3.7.2 Block Alarms Active Parameter	29
Table 13-block_alms_active Enumerations	29
3.7.3 Start Up State Parameter	30
Table 14-start_up_state Enumerations	30
3.7.4 Fault State and Fault State 2 Parameters	30
Table 15-fault_state Enumerations	30
3.7.5 Discrete State Parameter	31
Table 16-discrete_state Enumerations	31
3.7.6 Action Element Parameter	31
Table 17-action_element Enumerations	31
3.7.7 Maskable Signal Parameter	32
Table 18-maskable_signal Enumerations and Descriptions	32
3.7.8 Cycle Time History Parameter	32
3.8 Discrete Input Block Configuration	32
3.8.1 Available Discrete Input Channels	33
Table 19-Discrete Input Channels	33
3.8.2 Multi-State Channels	33
3.8.3 Discrete Input Conditional Enumerations	33
Table 20-Discrete Input Conditional Enumerations	34
3.8.4 Discrete Input Block Supported Modes	34

Table 21-DI Block-Supported Modes	
3.9 Discrete Output Block Configuration	
3.9.1 Available Discrete Output Channels	
Table 22-Discrete Output Channels	
3.9.2 Multi-State Channels	
3.9.3 Discrete Output Channel Interlocks	
Table 23-DO Block Interlocks	
3.9.4 Discrete Output Conditional Enumerations	
Table 24 (a)-Discrete Output -Readback Enumerations	
Table 24 (b) -Discrete Output -Readback Enumerations	
Table 25-Discrete Output -Enumerations, Other	
3.9.5 Discrete Output Block Supported Modes	
Table 26-DO Block-Supported Modes	
3.9.6 Discrete Readback Parameter	
3.9.7 Fault State	
Table 27-fstate_val_d Enumerations	
3.10 Required Parameter Configuration	
3.10.1 Resource Block	40
3.10.2 Transducer Block	40
3.10.3 DI Block(s)	40
3.10.4 DO Block(s)	40
4.1 The FOUNDATIONTM Fieldbus Protocol	40
4.2 Fieldbus Supported Topologies	
5.1 Resource Block Parameters	
Table 28(a)	
Resource Block Parameters	43
Table 28(b)	

	Resource Block Parameters	43
	Table 28(c)	45
	Resource Block Parameters	45
5	2 Transducer Block Parameter Descriptions	45
	Table 29(a)	45
	Transducer Block Parameter Descriptions	45
	Table 29(b)	46
	Transducer Block Parameter Descriptions	46
	Table 29(c)	47
	Transducer Block Parameter Descriptions	47
5	3 Discrete Input Parameters	48
	Table 30(a)	48
	Discrete Input Parameters	48
	Table 30(b)	48
	Discrete Input Parameters	48
5	4 Discrete Output Parameters	49
	Table 31(a)	49
	Discrete Output Parameters	49
	Table 31(b)	50
	Discrete Output Parameters	50
	Table 31(c)	51
	Discrete Output Parameters	51
A	ppendix A	52
	FPAC QuickCal Instructions	52
	Single Action Fail Close Valve	52
	Resource Block	53

Transducer Block	55
Discrete Output Block	58
Single Action Fail Open Valve	64
Transducer Block	64
Double Action	66
Table 32 – Discrete Output -ReadBack	66
Resource Block	67
Transducer Block	69
Discrete Output Block	71
Appendix B	
Connecting the FPAC to the Delta-V DCS for the First Time	
Appendix C	79
Transducer Block Views	79
Table 33(a)- Transducer Block Views	79
Table 33(b) - Transducer Block Views	80
Table 33(c) - Transducer Block Views	81
Appendix D	81
Connecting Two Valves to the FPAC	81
Appendix E	83
Wiring Instructions for 7345-FC-SRS Parsons Coax Units	83

1.1 Scope of Manual

This manual contains installation, configuration and specification data for the FPAC FOUNDATION[™] fieldbus valve controller.

This manual assumes a basic level of familiarity and competence with FOUNDATIONTM fieldbus terminology and technology. Only qualified personnel should install, operate and maintain this equipment. This manual uses the term **FPAC** to refer to any FF module of the family Intellis 7300.

1.2 Acronyms, Abbreviations and Symbol Definitions

This section contains a listing of all acronyms, abbreviations and symbol definitions used in this document.

Table 1-Acronyms		
NI	Non-incendive	
IS	Intrinsically Safe	
HW	Hardware	
SW	Software	
DCS	Distributed Control System	
FPAC	Fieldbus Pneumatic Actuator Controller	
DD	Device Description	
DI	Discrete Input	
DO	Discrete Output	
FB	Function Block	
FF	Foundation TM fieldbus	
RB	Resource Block	
ТВ	Transducer Block	
ROUT	Remote-Output mode	
RCAS	Remote-Cascade mode	
CAS	Cascade mode	
AUTO	Automatic mode	
MAN	Manual mode	
LO	Local Override mode	
IMAN	Initialization Manual mode	
OOS or O/S	Out Of Service mode	

Table 2-Abbreviations	
fieldbus	Foundation [™] fieldbus
xducer	Transducer

1.3 Symbols

This symbol warns the user of possible danger. Failure to heed this warning may lead to personal injury or death and/or severe damage to equipment.

This symbol warns the user of a possible failure. Failure to heed this warning can lead to total failure of the equipment or any other connected equipment.

This symbol gives the user important hints.

Note

1.4 About Foundation™ Fieldbus

Foundation fieldbus is not owned by a company, it is an open, interoperable [fieldbus] that is based on the International Organization for Standardization's Open Systems Interconnection (OSI/ISO) seven-layer communications model. The Foundation specification is compatible with the officially sanctioned SP50 standards project of the Instrumentation, Systems, and Automation Society (ISA) and the International Electrotechnical Commission (IEC).

The FOUNDATION fieldbus system architecture provides a framework for describing these systems as a collection of physical devices interconnected by a fieldbus network.

The FOUNDATION fieldbus architecture specifies two types of network segments, H1 links and High Speed Ethernet (HSE) subnetworks. H1 links use a subset of the IEC 61158 data link layer and HSE subnetworks use standard Ethernet/IP/TCP/UDP protocols.

FOUNDATION fieldbus networks may be composed of one or more of these interconnected segments. HSE subnetworks can use a variety of commercially available interconnection devices such as hubs, switches, bridges, routers, and firewalls. H1 links are interconnected physically only by FOUNDATION fieldbus H1 Data Link bridges. HSE to H1 interconnections are performed by FOUNDATION fieldbus Linking Devices.

Each physical device in a FOUNDATION fieldbus system performs a portion of the total system operation by implementing one or more application processes. Application processes perform one or more time-sensitive functions, such as providing sensor readings or implementing control algorithms. These and other elementary field device functions are modeled as function blocks. Their activities are coordinated through configuration of their operating parameters, execution schedules, and communications. Communication between application processes occurs through application layer protocols.

1.5 Westlock FOUNDATION™ Fieldbus FPAC

The FPAC module is a four input, two output network monitor. Inputs are compatible with dry contact type switches. The outputs are open drain active low (activated by pulling the input of the FET to ground) FET(s) with diode protection to 32Vdc.

Current consumption is a constant 24 mA independent of the piezo operator being energized or not. Operating voltage is 9-32Vdc. The FPAC incorporates a parameter that allows the user to de-activate the I/O LEDs Use of any standard 4-20 mA instrumentation cable (twisted shielded pair) for trunk and drops is permissible. For maximum drop and trunk distances the use of Type A cable is required. For a more detailed treatment of FOUNDATION[™] fieldbus physical media requirements refer to IEC 61158-2 and Fieldbus Foundation documents AG-140, AG-163, AG-181.

1.5.1 LED Status Indicators

The LEDs provide information concerning the status of inputs, outputs, the module and/or the network. The LEDs provide visual indication whether any inputs or outputs are active and whether the module or network are in a fault condition. The I/O Status LEDs are intended to indicate the state of the inputs and outputs of the module, not necessarily the on/off condition of the I/O points themselves.

LED.	State	Indicates
AUX 2	Yellow	Aux. 2 Input active
AUX 1	Yellow	Aux. 1 Input active
DS 1	Green	FPAC communicating on bus
CLSD	Yellow	Valve CLOSED (bottom Limit Sensor)
OPEN	Yellow	Valve OPEN (top Limit Sensor)
OUT 0	Yellow	OUT 0 active
OUT 1	Yellow	OUT 1 active

1.5.2 FPAC Module Layout (no. EL-40133 regular canister or EL-40137 explosion-

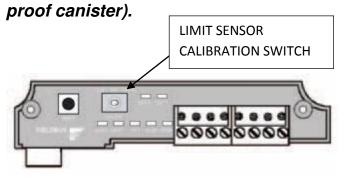


Figure 1 - FPAC Top View

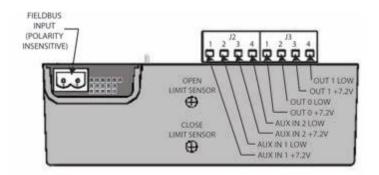


Figure 2 - FPAC Side View

1.6 Device Features

1.6.1 Auxiliary Inputs

There are two auxiliary discrete inputs available on the device. These inputs accept dry-contact type switches and are available as transducer channels for connection to DI function blocks. It is possible to interface the FPAC with active type PNP/NPN sensors, please consult the factory for details (see Appendix A).

1.6.2 Predictive Alarming

There are device specific operational alarms.

The *Cycle Time Alarm* is activated when the time between the activation of the valve and the detection of the associated limit switch closure exceeds the time limit set during configuration of the cycle of alarm parameter (located in the TB).

The *Hi Temperature* and *Low Temperature Alarms* are activated when the ambient temperature of the FPAC module exceeds the limits set during configuration of the Hi_Temperature / Low_Temperature_Alarm(s) (located in the TB). Since the operational temperature range of all piezo operators is (-20°C) - (60°C) it is possible for local environmental conditions to exceed these values.

These conditions can trigger FOUNDATIONTM fieldbus alarms on the bus that can be handled via the standard FOUNDATIONTM fieldbus alarm mechanism. For critical applications the *Maskable Signal* described in Section 1.6.4 can be used to link the alarms directly to a DI. This allows the alarm state to be linked directly to another FB for immediate action in the process.

1.6.3 Preventative Maintenance Alarming

Maintenance alarms can be generated when the user configured *Cycle Count Limit* is reached. The device will have a continuous cycle count for each piezo operator (dual piezo operator option available for *Fail Last* applications). The **cycle_count_limit** parameter (located in the TB) is set during configuration. The maintenance alarm will be generated when **cycle_count** accumulates a number larger than the associated **cycle_count_limit**. This condition can trigger an FOUNDATIONTM fieldbus alarm on the bus that can be handled via the standard FOUNDATIONTM fieldbus alarm handling. This condition can also immediately transmit to other FB(s) on the bus using the *Maskable Signal* described in Section 1.6.4 below.

1.6.4 Maskable Signal

The Maskable signal is a configurable channel (Channel 13) of the TB that can be connected to a DI Block. This channel allows the user to select one or more conditions which can be used to generate a signal in a DI Block that can then be linked via the fieldbus to another function block initiating a process response to the selected condition or conditions.

For example:

The **cycle_count_1** parameter has been enabled in the TB The accumulated value of the parameter **cycle_count_1** exceeds the configured limit The Maskable Signal has been associated to the **cycle_count_1** parameter A DI block has been configured to utilize Channel 13

When the above conditions are TRUE the DI block will indicate when the parameter **cycle_count_1** has exceeded its configured limit and transmit this indication to any FB it is linked to.

The Maskable Signals include: **cycle_count_limit_1** or 2 exceeds the configured limits **cycle_time** exceeds the configured limits Bad Transducer Status High/Low_Temperature exceeds the configured limits

The alarm signals that are to be transferred through Channel 13 are selected using the **signal_mask** parameter (located in the TB).

1.7 Fieldbus FOUNDATIONTM Conformance Documentation, CFF and DD Availability

The Westlock FPAC module is a Fieldbus FOUNDATIONTM registered device having successfully completed the required conformance tests. The CFF and DD are downloadable from the Foundation website at www.fieldbus.org (Manufacturer: "Westlock Controls" and Product name "FPAC EL40106") . FPAC EL40106 represents all Westlock FPAC final assemblies (for example:EL-40133 or EL-40137).

Table 4 – Fieldbus Foundation TM Conformance Documentation		
Manufacturer	Westlock Controls	
Model	FPAC Valve Controller EL-40133	
Туре	Discrete Valve Controller	
Revision	0X04	
Device ID	5743430001Westlock 011001001	
VFD Name	FBAP	
Tested Function Blocks	6xDI(s), 4xDO(s), 1xRB(s)	
Other Blocks	1xTB(c)	
UTK	5.2.0	
IT Camp. Number	IT079600	

1.8 Host System Compatibility Documentation

Allen-Bradley

The FPAC passed all stress and interoperability testing and is certified for installation in Allen-Bradley systems.

Emerson Process Management, Delta-V

The FPAC passed all stress and interoperability testing and is certified for installation in Delta-V systems.

Honeywell

The FPAC passed all stress and interoperability testing and is certified for installation in Honeywell systems.

SMAR

The FPAC passed all stress and interoperability testing and is certified for installation in SMAR systems.

Yokogawa

The FPAC passed all stress and interoperability testing and is certified for installation in Yokogawa systems.

1.9 Non-incendive and Intrinsically Safe Design Criteria and Agency Approvals

The Westlock FPAC module is designed in accordance with the criteria for NI and IS devices.

The FPAC requires the use of an agency approved IS barrier in IS applications. For information on the barrier used by Westlock Controls to obtain the agency approvals listed above, appropriate network architecture and segment device limits refer to Control Drawing WD-11835 located in Appendix F of this document. The FPAC EL-40157 is approved for both Entity and FISCO IS applications. Refer to Section 1.9.1 for parameters.

Table 5 -Hazardous Ratings		
Housing	Location Type	Rating
7344	Intrinsically Safe	IS /I/ 1 ABCD T4 Ta = 80° C
(Resin	5	IS I / 0 / IIC T4 Ta=80°C
Enclosure)	Non-Incendive	NI / I /2 / ABCD; S / II, III /2 /FG /T4 Ta=60°C TYPE 4X
7379	Intrinsically Safe	IS /I/ 1 ABCD T4 Ta = 80°C
	2	IS I / 0 / IIC T4 Ta=80°C
(Aluminum Explosion-	sion- Non-Incendive	N/I / I / 2 / ABCD / T6 Ta = 60°C;
Proof		DIP / II, III / 1 / EFG/ T6 Ta = 60°C ; TYPE 4, 4X
Enclosure)	Explosionproof	XP / I /1 CD / T6 Ta= 60°C;

1.9.1 Entity and FISCO Parameters

Table 6 - Entity and FISCO Parameters					
	Vmax	Imax	Pi	Ci	Li
Entity Parameters	30 V	100 mA	N/A	120 pF	0 mH
FISCO Parameters	30 V	380 mA	5.32 W	5 nF	10 µH

1.10 Device Specifications

- FOUNDATIONTM fieldbus Conformant Stack and hardware
- Intrinsically Safe and Non-incendive design and approvals
- Solid State position Limit Sensors
- Limit Sensor calibration switch
- Internal temperature sensor
- User configurable High and Low temperature alarm thresholds
- User configurable custom alarms
- Transducer with diagnostic features
- Polarity insensitive Fieldbus input
- Auxiliary Inputs
- 1x Resource Block
- 1x Transducer Block
- 6x Discrete Input
- 4x Discrete Output
- Function Block execution time: 60 mS
- UDC- User Defined Channel with Boolean output
- 20 configurable VCR(s)
- Valve driver: 2-piezo operators
- Operating voltage: 9-32VDC
- Maximum voltage: 35VDC
- Current consumption: 24 mA

1.11 Bibliography

Fieldbus FOUNDATIONTM - FOUNDATION Specification Function Block Application Process, Part 1 (FF-890) Fieldbus FOUNDATIONTM - FOUNDATION Specification Function Block Application Process, Part 2 (FF-891) Fieldbus FOUNDATIONTM - FOUNDATION Specification Transducer Block Application Process, Part 1 (FF-902) Fieldbus FOUNDATIONTM - FOUNDATION Specification Transducer Block Application Process, Part 2 (FF-903) Fieldbus FOUNDATIONTM - FOUNDATION Specification Common File Format (FF-103) Fieldbus FOUNDATIONTM - FOUNDATION Specification Device Description Language (FF-900) IEC 61158: Digital data comm. for measurement and control – Fieldbus for use in industrial control systems

2.1 Mounting

For steps 1-3 refer to Figure 3 below.

Attach the proper mounting bracket and adapter (if required) to the valve monitor housing with the hardware provided.

Operate the actuator to full closed position.

Attach the valve monitor and mounting bracket to the actuator.

Note the position of the actuator/valve and confirm the Beacon position is properly aligned, as shown in Figure 4 below while replacing the cover.

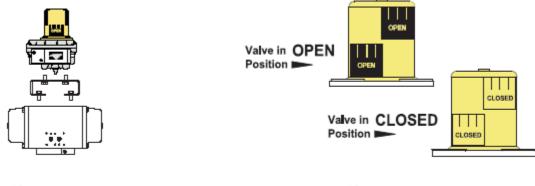
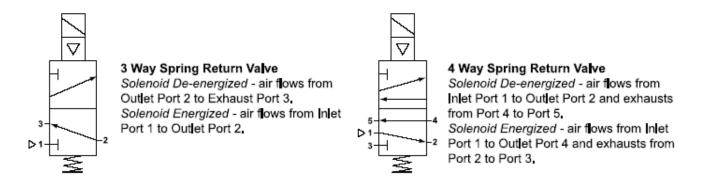


Figure 3

2.2 Pneumatic Connections


Personal injury and/or property damage may occur from loss of process control if the supply medium is not clean, dry oil-free air or non-corrosive gas. Instrument quality air that meets the requirements of ISA Standard S7.3-1975 is recommended for use with pneumatic equipment in process control environments. Westlock Controls recommends the use of a 20 micron filter with all Falcon solenoids.

2.2.1 Tubing and Fittings

The use of copper, stainless steel, nylon or polyethylene tube is recommended for piping up air circuits and equipment. As a general rule, pipe threaded fittings should not be assembled to a specific torque because the torque required for a reliable joint varies with thread quality, port and fitting materials, sealant used, and other factors. The suggested method of assembling pipe threaded connections is to assemble them finger tight and then wrench tighten further to a specified number of turns from finger tight. The assembly procedure given below is for reference only; the fitting should not be over tightened for this will lead to distortion and most likely, complete valve failure.

- 1. Inspect port and connectors to ensure that the threads on both are free of dirt, burrs and excessive nicks.
- 2. Apply sealant/lubricant or Teflon tape to the male pipe threads. With any sealant tape, the first one or two threads should be left uncovered to avoid system contamination.
- 3. Screw the connector into the port to the finger tight position.
- 4. Wrench tighten the connector approximately 1 2 turns (to seal) from finger tight. Again this is only reference the fitting should NOT be over tightened.3

2.2.2 Porting

2.2.3 Maintenance

Routine maintenance is usually confined to the periodic replenishment of *Dow Corning III* lubricant or equivalent to spool and spring.

2.2.4 Pneumatic Specifications

Table 7 - Pneumatic Specifications		
Operating Pressure	45-120 PSIG	
Operating Temperature	-10°C to +60°C (14°F to +140°F)	
Operating Media	Non Lubricated Filtered Air to 20 Microns	
Porting	1/4" NPT air ports for inlet, outlet and exhaust (3.5 Cv valve has 1/2" NPT air ports)	

2.3 Switch Adjustment

Switches are factory set. If you need to adjust switches for any reason follow instructions below.

2.3.1 Position Limit Sensor Calibration Switch

For convenience in setting the position Limit Sensors the FPAC allows the user to stroke the actuator via the *Limit* Sensors Calibration Switch (LSCS) (for location of switch on FPAC module see Section 1.5.2). The LSCS enables the user to set the Limit Sensors without an Open or Close command being sent to the FPAC from the host system. Three conditions must be TRUE for the switch to operate: The RB must be OOS The TB must be OOS

The "CALIBRATION ENABLE" parameter in the TB must be enabled.

2.3.2 Position Limit Sensor Calibration

For steps 1-8 refer to Figures 5 and 6.

Refer to Figure 6 and note the approximate locations of the Open and Close targets on the FPAC module. With the valve in the closed position, lift bottom cam of the Close sensor trigger.

Turn cam until face of trigger is perpendicular to the target and sensor is activated as evidenced by the lighting of the corresponding module LED.

Release the cam and the spring will push cam back onto the splined shaft.

Operate the actuator to the opened position.

Push down the top cam of the Open sensor trigger.

Turn cam until face of trigger is perpendicular to the target and sensor is activated as evidenced by the lighting of the corresponding module LED.

Operate actuator from one extreme to the other several times to check Limit Sensor operation.

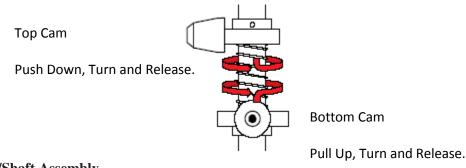


Figure 5- Trigger/Shaft Assembly

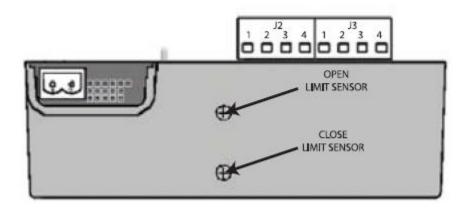
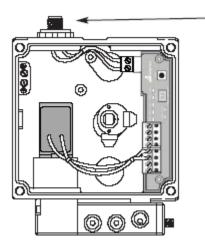


Figure 6- FPAC Hall Sensor Location

2.4 Wiring Instructions

All wiring must be in accordance with National Electrical Code (ANSI-NFPA-70) for the appropriate area classifications.

Models 7344 and 7379 are approved as Intrinsically Safe for Class I, Division 1, Groups A,B,C and D, Class I, Zone 0, Group IIC; with *Entity* and *FISCO* parameters. Model 7344 is also approved as Nonincendive for Class I, Division 2, Groups A,B,C and D; Suitable for Class II, III, Division 2, Groups F and G; Type 4X applications. Model 7379 is also approved as Explosionproof for Class I, Division 1, Groups C and D; Dust Ignition Proof for Class II, III, Division 2, Groups E, F and G; Type 4, 4X applications.


Always check the nameplate to make sure the agency approval ratings coincide with the application.

The proper wiring diagram for your unit is shown on the inside of the enclosure cover.

Note

- 1. Diagrams of the FPAC are shown in Figures 7 and 8.
- 2. Make the necessary wiring connections to the FPAC module as shown in Figure 9. Refer to Section 2.4.1 for connector pin outs.
- 3. Replace the electronics housing cover or junction housing cover.
- 4. Unit is now ready for automatic operation. For further assistance please contact Westlock Controls.

Optional Pin Connector-Either Micro or Mini

Figure 7 – Resin Enclosure

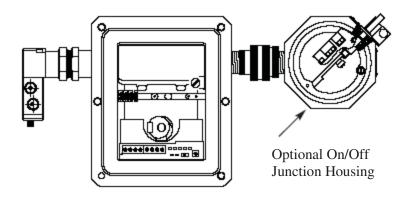


Figure 8 – Explosion-Proof Enclosure

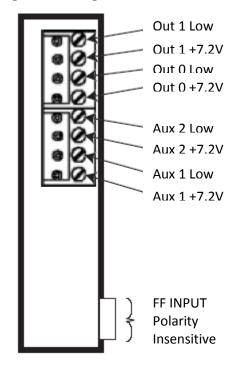
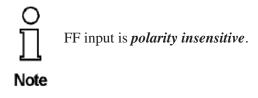



Figure 9 - FPAC Wiring Diagram

2.4.1 FPAC Connector Pin Out

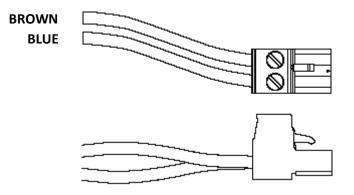


Figure 10 - FPAC 2 pin Phoenix Style Connector

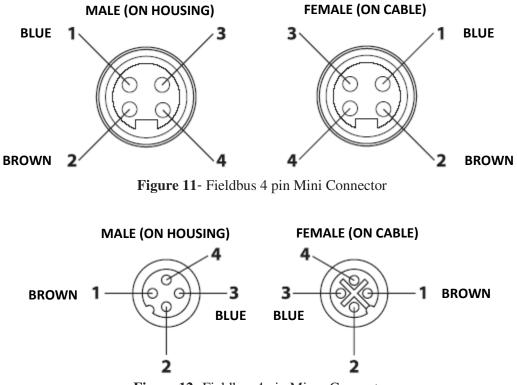


Figure 12- Fieldbus 4 pin Micro Connector

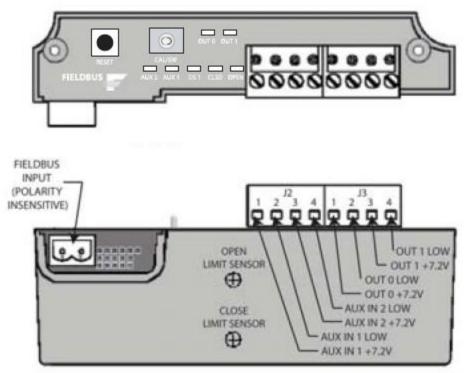


Figure 13 - FPAC Module

3.1 Quick Configuration

For QuickConfig Sheet see Appendix B.

Note

For detailed instructions, with graphics, on configuring the FPAC for the most common modes of operation refer to Appendix C.

Note

3.2 Hardware Write Protection

After the FPAC is configured the HW Write Protect jumper may be inserted into the Program Port to prevent configuration of device from being changed.

Note

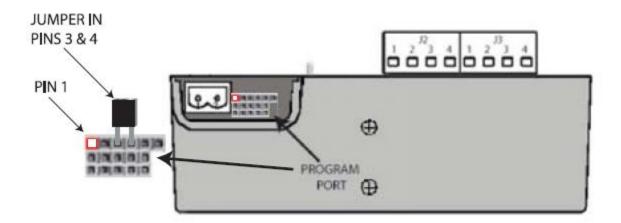


Figure 14 - Write Protect Jumper

Inserting the programmable jumper in Pins 3 & 4 of the Program Port will enable the Hardware Write Protection feature preventing any changes to the configuration of the device until the jumper is removed. Inserting the jumper in Pins 1 & 2 or removing the jumper completely allows normal operation of the device.

3.3 Channels

Channels are used to connect a standard Function Block to hardware functionality in the Transducer Block. There can be only one physical output or input per Channel. Multiple Channels may reference the same physical output or input, though not at the same time.

The specific channels in this device are listed in Sections 3.8 and 3.9.

3.3.1 Discrete Input Channels

Discrete Input Channels link the discrete input data from the FPAC Input HW (Limit Sensors, dry contact Aux. Inputs) selected by channel number, through the TB to the Discrete Input function blocks on fieldbus for use in control.

Discrete Input blocks convert data from the input hardware in the device to a value it makes available to other function blocks.

FPAC discrete inputs are developed from internal events such as an alarm or limit sensor state change and/or from external events via Auxiliary input state changes such as a High Level or pressure switch contacts being made.

3.3.2 Discrete Output Channels

Discrete Output Channels link the discrete output data from the Discrete Output function blocks on fieldbus, through the TB to the FPAC Output HW (piezo, Aux. Output) selected by channel number. Discrete Output function blocks on fieldbus always include a parameter **readback_d**.

A Discrete Output block converts the value received across the fieldbus to something useful for the output hardware in the device. The hardware may open or close a valve, turn a motor on or off, sound a buzzer, etc. **readback_d** is the actual discrete state value provided by the Limit Sensors (if appropriately configured in **io_opts** located in the DO FB). The actual discrete state is passed back through the Discrete Output function block via the **readback_d** parameter. Control schemes may use the **readback_d** value to reflect the actual position of the affected control element.

3.3.3 Channel Errors

Write checks limit the writing to only valid channels based upon the configuration already present. If no channels are currently configured, the first channel written determines the limits on subsequent channels. Attempts to run devices with invalid channel selections will result in the blocks not running and the generation of active block alarms from one of the following *channel errors*:

No Output Channels Close without Open Open without Close Conflicting Channels Assigned

3.3.4 Multi-State Channels

The device includes several multi-state discrete channels. A single discrete output channel includes three states: Open, Close, and Stop. Three discrete input channels are multi-state: **maskable_signal**, Open/Close, and Open/Close/Stop. The *Maskable Signal* discrete input channel can have any of 9 discrete states. If a channel is not multi-state it is bi-state.

3.4 Using Two Valves

When the device is configured to operate two valves, the device must be wired a certain way for correct operation (refer to Appendix D) and the **action_element** parameter must be configured correctly (refer to Section 3.3.6, TB Configuration).

The open limit switch of the secondary valve should be wired to the Auxiliary Input 1, and the close limit switch should be wired to the Auxiliary Input 2. If the device is not wired this way, the values for the secondary valve channels will not be correct.

The Outputs must be wired so that Output_0 is wired to the primary valve_1 and Output_1 is wired to the secondary valve.

3.5 Global Block Parameters

3.5.1 Mode Parameter

Mode is a parameter of four parts:

- 1. Actual mode
- 2. Target mode
- 3. Permitted mode(s)
- 4. Normal mode.

Target mode may be set and monitored by the user. Target mode determines which mode the user wants the block to transfer.

Actual mode is set by the block during its execution and reflects the mode used during execution. Allowed target modes are defined by *permitted mode(s)*. This is configured in each block. *Normal mode* is the desired operating mode of the block in normal operation.

When a block is in *Out of Service* mode (*O/S* or *OOS*) it will not evaluate and the associated data will have Bad Status. If the mode is OOS the output of the function block is usually maintained at the last value but can be configured to go to a predefined *Fail State*.

Parameter configurations are usually performed in OOS mode so there is no bump in a running process. Before a particular block will be usable in a configuration, the mode must not be OOS and block specific parameters may need modification (appropriate Channel or **action_element** selected, etc.).

Table 8 -Mode Enumerations		
Numerical Value	Enumerations	
0x01	Remote-Output (Rout)	
0x02	Remote-Cascade (RCas)	
0x04	Cascade (Cas)	
0x08	Automatic (Auto)	
0x10	Manual (Man)	
0x20	Local Override (LO)	
0x40	Initialization Manual (IMan)	
0x80	Out of Service OOS or	

3.5.2 Status

Input and Output parameters have a value, and status. The *status* tells the condition of the value, whether the data is Bad, Uncertain, Good (cascade), or Good (non-cascade). A sub-status tells more about the value, such as possible reasons for the status. The Quality narrows the conditions even more.

Status can assist in diagnosing issues in the system and is used for validating communicated data.

Use the **block_err** (Block Error) parameter as an aid in troubleshooting.

Note

O

The **block_err** parameter, common to all blocks, will remain active until the condition causing the error is no longer active. The values for block_err are defined by the Fieldbus Foundation.

Table 9 -block_err Enumerations		
Bit	Hex	
Value	Value	Enumeration
0	0x0001	Other -a non zero error condition in the transducer error
0	0,0001	parameter.
1	0x0002	Block Configuration
2	0x0004	Link Configuration
3	0x0008	Simulation
4	0x0010	Override
5	0x0020	Fault State
6	0x0040	Maintenance Needed Soon
7	0x0080	Input Failure
8	0x0100	Output Failure
9	0x0200	Memory Failure
10	0x0400	Lost Static Memory
11	0x0800	Lost NV Memory

12	0x1000	ReadBack Failure	
13	0x2000	Maintenance Needed Now	
14	0x4000	Power Up	
15	0x8000	Out of Service	

3.6 Resource Block Configuration

3.6.1 Resource Block Supported Modes

Some host systems handle *enumerations* correctly while others do not. Please note that these tables may be very useful for those using host systems that do not process enumerations correctly and are unable to display the appropriate text strings.

Table 10-RB -Supported Modes		
Numerical Value Enumerations		
0x08	Automatic (Auto)	
0x40	Initialization Manual (IMan)	
0x80	Out of Service (O/S)	

Resource block supported modes are defined by the FOUNDATIONTM fieldbus Specifications.

3.6.2 Discrete Readback Parameter

FOUNDATION fieldbus output blocks have a **readback_d** parameter. For different Channels it may show different values. Control schemes may use the **readback_d** value to reflect the actual state of the affected controlled element.

Note

To enable **readback_d** in any standard FOUNDATIONTM fieldbus output block two options must be verified:

- 1. In the RB, **feature_sel** must include bit 5- *Out ReadBack* (**feature_sel** enumeration 0x20). To change **feature_sel**, the RB must be in OOS.
- 2. In the Discrete Output block, the **io_opts** Bit 9- *Use PV for bkcall_out* must be selected to enable **readback_d**. The DO block must be in OOS before modifying IO_OPTS.

3.6.3 Fault State Parameter

The **fault_state** parameter, located in the RB, defines the action taken by a block when stale data or communication failure is detected. **fault_state** is also used when bad or uncertain quality is specified for each block. Function blocks that utilize process input (DO, PID, etc.) will have parameters to allow a special *Fault State* action to be specified on detection of an input with bad or uncertain quality (stay put, fail open, etc.).

The actual fault state parameter is included in the RB since it is common to all function and transducer blocks. The fault state parameter determines the response of an output block if one or more fault state conditions are present in the device longer than the value specified in the parameter **fstate_time**.

fault state conditions include:

loss of communications to **cas_in**

Initiate **fault_state** status at **cas_in** when the target mode is CAS Initiate **fault_state** status at **rcas_in** when the target mode is RCAS

If a fault state condition does not clear within the user specified value for **fstate_time**, then the block output will be automatically driven to the predefined fault state and, optionally, the target mode will be set to MAN.

The **fstate_type** parameter determines the action to be taken - hold last value or go to the state defined by the user via the **fstate_val_d** parameter.

Writing the **set_fstate** parameter of the RB may also put this block into the predefined fault state. To clear the fault state, either the condition clears, or the user may write the **clr_fstate** parameter in the RB.

If the external condition which caused the fault state condition has not cleared writing the **clr_fstate** will have no effect as the device will immediately reenter fault state

The **io_option** parameter located in the DO(s) must be appropriately configured.

An FOUNDATIONTM fieldbus alarm will be generated upon transition to an active fault state. The alarm will be handled using the standard alarm handling mechanism.

3.6.4 Resource State Parameter

The **rs_state** (*Resource State*) parameter, located in the RB, reflects the overall status of the function block application. There are 6 resource state enumerations. The **rs_state** parameter can be used to determine hardware and resource failures that effect operation of the device.

Note

Table 11-RB State Enumerations		
Numerical		
Value	Enumeration	Description
0x01	Restart	The resources are restarting and are unavailable at this time
0x02	Init	Block resources are initializing. All Alarms are acknowledged and cleared automatically
0x03	Linking	Links are being established, blocks are not yet ready for control
0x04	Online	Operational, all systems functional. Links established, parameters evaluated
0x05	Standby	Block mode is Out Of Service
0x06	Failure	Memory or other hardware failure that prevents reliable operation

3.7 Transducer Block Configuration

3.7.1 Transducer Block Supported Modes

Some host systems handle enumerations correctly while others do not. Please note that these tables may be very useful for those using host systems that do not process enumerations correctly and are unable to display the appropriate text strings.

Table 12-TB -Supported Modes		
Numerical Value	Enumerations	
0x08	Automatic (Auto)	
0x10	Manual (Man)	
0x80	Out of Service (O/S)	

The modes supported by the TB are defined by the device manufacturer. In Man mode the DO channel values are not acted upon, but instead the output can be set using the **sp_d** and **sp_d2** parameters.

3.7.2 Block Alarms Active Parameter

Use the **block_err** (Block Error) parameter as an aid in troubleshooting (refer to Table 9 in Section 3.5.3).

Note The **block_alms_active** parameter, located in the TB, gives the user further insight into configuration errors that prevent expected operation of the device. After the error is identified, the user must take the appropriate steps to eliminate the error before the device will function as intended.

Table 13-block_alms_active Enumerations		
Numerical Value	Enumeration	Description
0x00000000	None Active	No active block alarms
0x08000000	Fault State Active	Fault State is active in the transducer block due to an invalid input or mis-configuration
0x04000000	Invalid Mode	The computed actual mode for the block is not supported, the block s actual mode will go to out of service
0x02000000	Bad Output Configuration	Conflicting output channels have been assigned. Please review channels assignments and make appropriate corrections
0x01000000	Invalid Input	The target position is not valid for the current device configuration
0x00800000	Out Of Service	Transducer block is out of service
0x00400000	No Output Channels	No output channels have been assigned, i.e. there can be no action

0x00200000	Open without Close	An Open output channel has been assigned without Close a channel
0x00100000	Conflicting Channels	Conflicting output channels have been assigned, please review and correct
0x00080000	Both Contacts Closed	Both contacts are closed
0x40000000	Mode Error	the mode calculator detected an error

3.7.3 Start Up State Parameter

The start_up_state parameter, located in the TB, specifies the initial position of the valve upon startup of the device.

Table 14-start_up_state Enumerations		
Numerical Value	Enumeration	
0	Close	
1	Open	
2	Stop	
3	No-	

3.7.4 Fault State and Fault State 2 Parameters

If the status from the associated function block is bad or if the RB has determined a problem, the valve will default to this position.

Attention

The primary valve is the target of **fault_state** and the secondary valve is the target of **fault_state_2** Both parameters are located in the TB.

Table 15-fault_state Enumerations	
Numerical Value	Enumeration
0	Close
1	Open
2	Stop
3	No-

The **discrete_state** parameter, located in the TB, provides indication of the state of the following variables; *Auxiliary1 active*, *Auxiliary2 active*, *Write Protect Jumper Enabled*, *Simulate Jumper Enabled*, *Valve 1 Active*, or *Valve 2 Active*.

Table 16-discrete_state Enumerations			
Numerical Value	Enumeration		
0x01	Write Protect Jumper		
0x02	Simulate Jumper		
0x04	Valve1 Active		
0x08	Valve2 Active		
0x10	Auxiliary 1		
0x20	2		

3.7.6 Action Element Parameter

The **action_element** parameter is located in the TB and is user configurable. This parameter determines the type of valve operation required by the process application.

The selection of the **action_element** parameter will affect the meaning of the outputs of the device. It **MUST** be configured and configured correctly or the device may either operate in an unexpected manner or will not operate at all.

Table 17-action_element Enumerations			
Numerical			
Value	Enumeration		
0	No Selection		
1	Single Action		
3	Double Action		
4	Single Action, Reverse Acting		
6	Double Action, Reverse Acting		
8	Independent, both Normal Acting		
9	Independent, 1Reverse Acting 2Normal Acting		
10	Independent, 1Normal Acting 2Reverse Acting		
11	both Reverse		

3.7.7 Maskable Signal Parameter

The **maskable_signal** parameter, located in the TB, can be used to allow certain alarms to be linked via a DI Function Block directly to the control process. The alarms are based upon certain conditions in the device as listed in Table 18 below. This is accomplished by configuring the signal mask in the TB and configuring a DI to use Channel 13 (see Section 3.8.1 below for a complete listing of DI Channels).

This feature allows the user to configure the process in such a way that critical responses to the selected alarms can be acted upon immediately by another function block on the bus (to close a valve, stop a pump, etc). Alarm signals are typically handled by the standard FOUNDATIONTM fieldbus alarm handling mechanisms which can impart latency to the alarm signal as it must be processed by the host system.

Note

Table 18-maskable_signal Enumerations and Descriptions				
Numerical Value	Enumerations Description			
0	No Selection	No signal is selected to generate discrete		
1	Cycle Count 1 exceeds limits	Number of valve cycles exceeds the Cycle Count1 limit		
2	Cycle Time exceeds limits	Cycle time exceeds limit set in cycle_time_lim		
4	Bad Xducer Status	Status of the transducer is not Good		
5	Hi Temp. Alarm exceeds limits	Threshold configured for this parameter has been exceeded		
6	Hi Temp. Alarm exceeds limits	Threshold configured for this parameter has been exceeded		

3.7.8 Cycle Time History Parameter

The **cycle_time_history** parameter is configurable and located in the TB. A set of up to 400 cycle times can be stored in the device and later retrieved using the standard fieldbus trend system.

To store the cycle times the cycle_time_collect_type parameter must be enabled. Either *continuous collection* or *one-time collection* may be chosen.

To initiate the collection of timing data the **collect_cycle_time** parameter must be set to Active . If you select continuous collection, select *Inactive* to stop the collection of data.

To report the collected data, configure the **cycle_time_history** parameter as a standard fieldbus trend.

Once configured, set the **collect_cycle_time** parameter to *Report*. The collected data will be sent via the standard trend mechanism. Once all the collected data has been reported, the report will stop. To have the report sent again, set **collect_cycle_time** parameter to Report again.

3.8 Discrete Input Block Configuration

The Auxiliary Inputs have special meanings when the device is configured for a second valve. Please refer to the information in Section 3.4 for further details.

note

Table 19-Discrete Input Channels				
0	No Transducer Connection			
9	Open/Close			
10	Open			
11	Close			
12	Open/Close/Stop			
13	Maskable Signal			
14	Auxiliary Input			
15	Auxiliary Input 2			
16	Open/Close for second valve (when available)			
17	Open for second valve (when available)			
18	Close for second valve av			

3.8.2 Multi-State Channels

There are three *multi-state* discrete input channels:

- **1. maskable_signal** The Maskable Signal discrete input channel can have any of 9 discrete states.
- 2. Open/Close
- 3. Open/Close/Stop.
 - All other DI channels are *bi-state*.

3.8.3 Discrete Input Conditional Enumerations

Conditionals are expressions in the device description that allow the enumerations of one parameter to be based on the value of another parameter. In other words, conditionals can be used to present the user a certain list of **out_d** enumerated values based on the Channel that was selected for the block.

Some host systems handle conditionals correctly while others do not. Please note that these tables may be very useful for those using host systems that do not process conditionals correctly and are unable to display the appropriate text strings.

The device contains several conditionally evaluated parameters. The DI conditionals are listed in Table 20.

Table 20-Discrete Input Conditional Enumerations				
Channel Value	Channel Meaning	Enumerations for Simulate Value, OUT_D, PV_D		
0	No Transducer Connection	No Transducer Connection		
		0, Closed		
		1, Opened		
9	Open/Close	2, Stopped		
	1	3, Is Closing		
		4, Is Opening		
10	Onon	0, Not Open		
10	Open	1, Opened		
11	Close	0, Not Closed		
11	Close	1, Closed		
	Open/Close/Stop	0, Closed		
		1, Opened		
12		2, Stopped		
		3, Is Closing		
		4, Is Opening		
13	Maskable Signal	0, Maskable Signal Items OK		
15	Iviaskable Signal	1, One or more Maskable Signal Items has Exceeded Limit		
14	Auxiliary Input 1	0, Auxiliary 1 Dry Contact Closed		
17		1, Auxiliary 1 Dry Contact Open		
15	Auxiliary Input 2	0, Auxiliary 2 Dry Contact Closed		
10		1, Auxiliary 2 Dry Contact Open		
		0, Closed 2		
		1, Opened 2		
16	Open/Close for second valve	2, Stopped 2		
		3, Is Closing 2		
		4, Is Opening 2		
17	Open for second valve	0, Not Open 2		
		1, Open 2		
18	Close for second valve	0, Not Closed 2		
		1, Close 2		

3.8.4 Discrete Input Block Supported Modes

Some host systems handle enumerations correctly while others do not. Please note that these tables may be very useful for those using host systems that do not process enumerations correctly and are unable to display the appropriate text strings.

Table 21-DI Block-Supported Modes		
Numerical Value	Enumerations	
0x08	Automatic (Auto)	
0x10	Manual (Man)	
0x80	Out of Service	

DI block supported modes are defined by the FOUNDATIONTM fieldbus Specifications.

3.9 Discrete Output Block Configuration

3.9.1 Available Discrete Output Channels

Table 22-Discrete Output Channels			
0	No Transducer Connection		
1	Open/Close		
2	Open		
3	Close		
4	Stop		
5	Open/Close/Stop		
6	Open/Close for second valve (when available)		
7	Open for second valve (when available)		
8	Close for second valve av		

3.9.2 Multi-State Channels

There is a single *multi-state* discrete output channel which includes three states: Open, Close, and Stop. All other DO channels are *bi-state*.

3.9.3 Discrete Output Channel Interlocks

The Discrete Output Channels have interlocks that only allow certain configurations. These are validated based upon the first channel selected. The first column lists the current channel selected in a Discrete Output Block. When the channel in the first column is selected, the row corresponds to the required, disallowed or optional selections for the other Discrete Output blocks.

Note

The device contains several conditionally evaluated parameters. The DO readback_d conditionals are listed in Sect.3.3.2 while the **out d** and other conditionals are listed in Table 24.

Table 23-DO Block Interlocks						
Selected Channel012345				5		
0 -No Xducer Connection	0	0	0	0	0	0
1 -Open/Close-out	0	Х	Х	Х	0	Х
2 -Open-out	0	Х	Х	1	0	Х
3 -Close-out	0	Х	!	Х	0	Х
4 -Stop-out	0	0	0	0	Х	Х
5 -Open/Close/Stop-out	0	Х	Х	Х	Х	Х

! - Required, X - Disallowed, O - Optional

3.9.4 Discrete Output Conditional Enumerations

Conditionals are expressions in the device description that allow the enumerations of one parameter to be based on the value of another parameter. In other words, conditionals can be used to present the user a certain list of **out_d**, **readback_d** and other enumerated values based on the Channel that was selected for the block.

Some host systems handle conditionals correctly while others do not. Please note that these tables may be very useful for those using host systems that do not process conditionals correctly and are unable to display the appropriate text strings.

Table 24 (a)-Discrete Output -Readback Enumerations				
Channel Value	Channel Meaning	Enumerations for readback_d		
0	No Transducer Connection	No Transducer Connection		
		0, is closed		
1	Orean /Class	1, is opened		
1	Open/Close	4, is closing		
		3, is opening		
2	Open	0, not open		
2		1, is opened		
3	Close	0, not closed		
5	Close	1, is closed		
4	Stop	0, not stopped		
4	Stop	1, is stopped		
5	Open/Close/Stop	0, is closed		
		1, is opened		
		2, is stopped		
		3, is opening		
		4, is closing		

Table 24 (b) -Discrete Output -Readback Enumerations		
Channel Value	Channel Meaning	Enumerations for readback_d
6	Open/Close for second valve	0, is closed 2
		1, is opened 2
		4, is closing 2
		3, is opening 2
7	Open for second valve	0, not closed 2
		1, is closed 2
8	Close for second valve	0, not open 2
		1, is opened 2

Table 25-Discrete Output -Enumerations, Other		
Channel Value	Channel Meaning	Enumerations for Simulate Value, out_d, pv_d, cas_in_d, rcas_in_d
0	No Transducer Connection	No Transducer Connection
1	Open/Close	0, Close 1, Open
2	Open	0, Not Closed 1, Close
3	Close	0, Not Open 1, Open
4	Stop	0, No Operation 1, Stop
5	Open/Close/Stop	0, Close 1, Open 2, Stop

3.9.5 Discrete Output Block Supported Modes

Some host systems handle enumerations correctly while others do not. Please note that these tables may be very useful for those using host systems that do not process enumerations correctly and are unable to display the appropriate text strings.

Table 26-DO Block-Supported Modes	
Numerical Value	Enumerations
0x02	Remote-Cascade (RCas)
0x04	Cascade (Cas)
0x08	Automatic (Auto)
0x10	Manual (Man)
0x20	Local Override (LO)
0x40	Initialization Manual

DO block supported modes are defined by the FOUNDATIONTM fieldbus Specifications. Therefore while the DO block supports Local Override and Initialization Manual, these modes are not user selectable.

Note

3.9.6 Discrete Readback Parameter

Foundation fieldbus output blocks have a **readback_d** parameter. For different Channels it may show different values. Control schemes may use the **readback d** value to reflect the actual state of the affected controlled element.

To enable *Discrete Readback* in any standard FOUNDATION fieldbus output block two options must be verified: In the RB, the feature_sel parameter must include bit 5- Out ReadBack (feature_sel enumeration 0x20). To configure feature_sel, the RB must be in OOS.

In the Discrete Output block, the io_opts parameter Bit 9- Use PV for BKCAL_OUT must be selected to enable readback_d. The DO block must be in OOS before modifying io_opts.

Note

3.9.7 Fault State

The **fault_state** parameter, located in the RB, defines the action taken by a block when stale data or communication failure is detected. Fault State is also used when bad or uncertain quality is specified for each block. Function blocks that utilize process input (DO, PID, etc.) will have parameters to allow a special *Fault State* action to be specified on detection of an input with bad or uncertain quality (stay put, fail open, etc.).

The **fault_state** and **fstate_time** parameters located in the RB must be appropriately Note configured, refer to Section 3.6.3 for details.

The *Fault State to value* option in **io opts** in the DO determines whether the action is simply to hold the current state, or move to **fstate_val_d**. If the **io_opts** is 0, the value will hold the current value (freeze) if a fault is detected. If the io_opts is 1, the output will go to the preset fstate_val_d value, if a fault is detected.

The *Target to Manual if IFS* option in **io_opts** may be used to latch the **fault_state** parameter. Setting the **io_opts** to this option will cause the target mode to automatically change to Man when a fault is detected. The block will then have to be manually set to its normal target mode.

The target mode needs to be manually changed from Man mode when conditions are corrected. If the external condition which caused the fault state condition has not cleared the device will immediately reenter fault state.

Note

A FOUNDATIONTM fieldbus alarm will be generated upon transition to an active fault state. The alarm will be handled using the standard alarm handling mechanism. The choices for **fstate_val_d** are listed in Table 27.

 Table 27-fstate_val_d Enumerations

Numerical Value	Enumeration
0	Close
1	Open
2	Stop
3	No-

3.10 Required Parameter Configuration

operation refer to Appendix C.

This section lists the parameters that are required to be configured for the device to operate. It is suggested that other parameters be configured by the end user to optimize the functionality of the FPAC for your specific application. For a complete listing of all parameters in the device refer to Section 5.

Note

To view the Quick Configuration Sheet, see Appendix B.

Note

All required parameters of the FPAC have been configured for normal operation out of the box as a single acting spring return valve.

For detailed instructions, with graphics, on configuring the FPAC for the most common modes of

Note

The **restart** parameter in the RB allows the user to return the FPAC to the factory default settings by selecting the *Restart with factory defaults* option.

Note

Restarting the device may cause loss of process control. Confirm that you fully understand what the effect on the process will be if the device is being restarted. A device undergoing *restart* will be offline during the restart process and may force the valve to a preconfigured fault state.

3.10.1 Resource Block

Required Configuration mode_blk.target

3.10.2 Transducer Block

Required Configuration

action_element mode_blk.target

3.10.3 DI Block(s)

Required Configuration

mode_blk.target channel (if block is to be used)

3.10.4 DO Block(s)

Required Configuration

mode_blk.target channel (if block is to be used)

4.1 The FOUNDATION Fieldbus Protocol

FOUNDATIONTM fieldbus communications protocol is an industry proven international standard (IEC 61158) designed for use in the process industry. Features include multi-drop capabilities (as many as 32 devices per segment), extended trunk length, single loop integrity, control in the field, power and communication on a shielded twisted pair network, and compatibility with intrinsically safe networks. A key feature of the fieldbus protocol is the ability to select where control of the process is situated - in the host, in the field, or in various combinations of both locations.

The Fieldbus FOUNDATION defined application layer is based on Function Blocks. Function Blocks are structures with defined behavior used to represent different types of functions that the device performs. Figure 1 below illustrates a simple control loop with an AI FB in a level transmitter linked to a PID FB whose signal is controlling the position of the control valve via the DO FB. Both the PID and DO reside within the control valve.

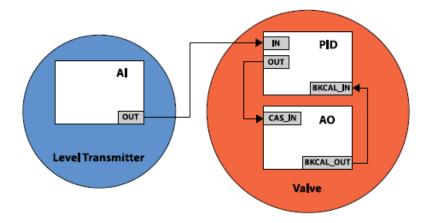


Figure 15 Linked Function Blocks

The parameters of these blocks follow a standard framework, but manufacturers are free to enhance standard features and add additional functions as necessary. Every Fieldbus FOUNDATION device has a Resource Block, Function Blocks, and possibly a Transducer Block.

Once the hardware of a fieldbus device is configured, fieldbus communication is used to configure the transducer block parameters. The desired transducer functionality is associated with a specific function block via a Channel. A Channel links real world HW with the functionality of associated FB(s) as shown in Figure 16.

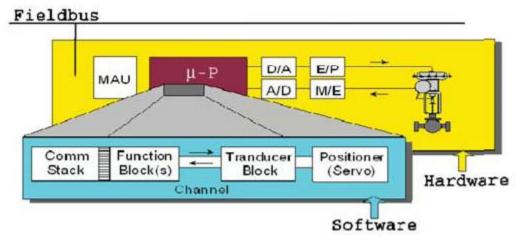
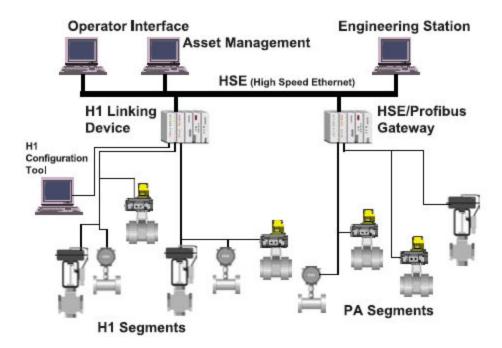
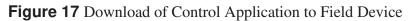
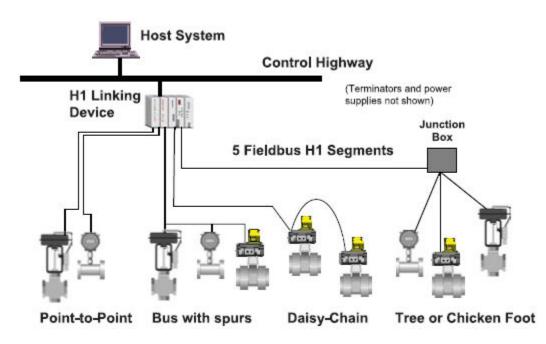




Figure 16 Channel Linking HW via TB Configuration with FB(s)


The host system s Engineering Station is used to link the function blocks together to create a control application that can be downloaded to the devices on the H1 segment as illustrated in Figure 17.

FOUNDATION Fieldbus provides the user with standardized calibration, diagnostic, and status data that enables users of Fieldbus FOUNDATION registered products to benefit from the advantages of smart instruments.

4.2 Fieldbus Supported Topologies

Figure 18 FF Supported Topologies

Tables 28 31 list and define all parameters for each block contained in this device. The parameters are listed by name as they appear in the DD (*Device Description file*).

Some parameters are Read/Write and others are read-only. Some Write parameters are only

configurable when the appropriate interlocks are configured and/or the required block is OOS.

Note

Table 28(a) I	Resource Block Parameters
Parameter	Description
st_rev	The revision level of the static data associated with the function block. To support tracking changes in static parameter attributes, the associated block s static revision parameter will be incremented each time a static parameter attribute value is changed. Also, the associated block s static revision parameter may be incremented if a static parameter attribute is written but the value is not changed.
tag_desc	The user description of the intended application of the block.
strategy	The strategy field can be used to identify grouping of blocks. This data is not checked or processed by the block.
alert_key	The identification number of the plant unit. This information may be used in the host for sorting alarms, etc.
mode_blk	The actual, target, permitted, and normal modes of the block.
block_err	This parameter reflects the error status associated with the hardware or software components associated with a block. It is a bit string, so that multiple errors may be shown.
rs_state	State of the function block application state machine.
test_rw	Read/write test parameter used only for conformance testing.
dd_resource	String identifying the tag of the resource which contains the Device Description for this resource.
manufac_id	Manufacturer identification number used by an interface device to locate the DD file for the resource
dev_type	Manufacturer s model number associated with the resource used by interface devices to locate the DD file for the resource.
dev_rev	Manufacturer revision number associated with the resource used by an interface device to locate the DD file for the resource.
dd_rev	Manufacturer revision number associated with the resource used by an interface device to locate the DD file for the resource.
grant_deny	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
hard_types	The types of hardware available as channel numbers.
restart	Allows a manual restart to be initiated. Several degrees of restart are possible. They are 1: Run, 2: Restart resource, 3: Restart with defaults, and 4: Restart processor.
features	Used to show supported resource block options.
features_sel	Used to select resource block options.
cycle_type	Identifies the block execution methods available for this resource.
Table 28(b) Resource Block Parameters	
cycle_sel	Used to select the block execution method for this resource.
<pre>min_cycle_t</pre>	Time duration of the shortest cycle interval of which the resource is capable.

	Available configuration moments in the empty recourse. To be checked before
memory_size	Available configuration memory in the empty resource. To be checked before attempting a download.
	Minimum time interval specified by the manufacturer for writing copies of NV
	(non-
nv_cycle_t	volatile) parameters to NV memory. Zero means it will never be automatically
	copied. At the end of nv_cycle_t only those parameters which have changed (as
	defined by the manufacturer) need to be updated in NVRAM
free_space	Percent of memory available for further configuration. Zero in a preconfigured
	resource.
free_time	Percent of the block processing time that is free to process additional blocks.
shed_rcas	Time duration at which to give up on computer writes to function block RCas
Shea_reas	locations. Shed from RCas shall never happen when shed_rcas= 0.
shed rout	Time duration at which to give up on computer writes to function block ROut
shed_rout	locations. Shed from Rout shall never happen when shed_rout= 0.
	Condition set by loss of communication to an output block, fault promoted to an
fault state	output block or a physical contact. When Fault State condition is set, Then output
_	function blocks will perform their fstate actions.
set_fstate	Allows the Fault State condition to be manually initiated by selecting Set.
alm fatata	Writing a Clear to this parameter will clear the device fault state if the field
clr_fstate	condition, if any, has cleared.
max_notify	Maximum number of unconfirmed notify messages possible.
lim_notify	Maximum number of unconfirmed alert notify messages allowed.
confirm time	The time the resource will wait for confirmation of receipt of a report before trying
contrin_crine	again. Retry shall not happen when confirm_time= 0.
write_lock	If set, no writes from anywhere are allowed, except to clear write_lock. Block inputs
	will continue to be updated.
update_evt	This alert is generated by any change to the static data.
	The block alarm is used for all configuration, hardware, connection failure or system
	problems in the block. The cause of the alert is entered in the subcode field. The first
block_alm	alert to become active will set the Active status in the Status attribute. As soon as the
	Unreported status is cleared by the alert reporting task, another block alert may be
	reported without clearing the Active status, if the subcode has changed.
- 1	The current alert status, unacknowledged states, unreported states, and disabled
alarm_sum	states of the alarms associated with the function block.
	Selection of whether alarms associated with the block will be automatically
ack_option	acknowledged.
ls_cal_switch	Parameter must be enabled for the Limit Sensor Calibration Switch to be operative.
	Allows user to select Ultra-low Current mode (FPAC-IS consumes 18 mA) by
set_currentsink	disabling I/O LED(s).
write_pri	Priority of the alarm generated by clearing the write lock.
write_alm	This alert is generated if the write lock parameter is cleared.
	r

itk_ver	Major revision number of the interoperability test case used in certifying this device
	as interoperable. The format and range of the version number is defined and
	controlled by the Fieldbus Foundation. Note: The value of this parameter will be
	zero (o) if the device has not been registered as interoperable by the Fieldbus
	Foundation.

Table 28(c)Resource Block Parameters

Parameter	Description
block_alms_act	Enumerations of the active blocks alarms for improved debugging.
supported_modes	The modes supported by the block.
ikey	License key.
revision_id	The revision identifier of the device.
revision_date	The revision date of the device.

5.2 Transducer Block Parameter Descriptions

Table 29(a)Transducer Block Parameter Descriptions		
Parameter	Description	
act_fail_action	Specifies the final failure position of the actuator as defined in section 4.6 of FF- 903 rev PS3.0	
act_man_id	The actuator manufacturer identification number.	
act_model_num	The actuator model number.	
act_sn	The actuator serial number.	
action_element	User configurable parameter to determine the type of valve operation needed. It MUST be set before operation.	
alert_key	The identification number of the plant unit. This information may be used in the host for sorting alarms, etc.	
auxinput1	State of first auxiliary discrete state.	
auxinput2	State of second auxiliary discrete state.	
block_alm	Used for all configuration, hardware, connection failure, or system problems in the block. The cause of the alert is entered in the subcode field. Queued and reported as generated.	
block_alms_active	Detailed listing of active block alarms to assist troubleshooting.	
block_err	The error status associated with the hardware or software components associated with a block. It is a bit string, so that multiple errors may be shown.	
breakaway_time	Westlock reported time taken for valve to begin moving.	
clear_cycle_count	User writable to clear the cycle count of the first valve and begin counting from 0 again.	

clear_clcle_count2	User writable to clear the cycle count of the second valve and begin counting from 0 again.
close_lim_switch	Discrete showing state of the close limit switch as seen in Shared Data.
collect_cycle_time	Enables the collection of cycle_time in cycle_time_history
cycle_count	Westlock reported number of cycles on the first valve.
cycle_count_alm	Alarm generated when the number of cycles on the first valve exceeds the limit.
cycle_count_lim	User configurable limit of number of cycles on first valve before alarm is generated.
cycle_count2	Westlock reported number of cycles on the second valve.
cycle_time	Westlock reported time taken to cycle the valve.
cycle_time_alm	Alarm generated when valve does not cycle in the desired time.

Table 29(b)Transducer Block Parameter Descriptions		
Parameter	Description	
cycle_time_collect_type	Selects Continuous or stop when full collection of cycle time.	
cyclce_time_history	Last cycle_time, used for trending cycle_time.	
cycle_time_lim	User configurable Floating Point value used as limit to determine cycle time alarm.	
cycle_time_pri	User configurable priority of cycle time alarm	
device_err	Errors preventing proper operation of device.	
discrete_state	FPAC generated value indicating whether Auxiliary1 active, Auxiliary2 active, Write Protect Jumper Enabled, Simulate Jumper Enabled, Valve 1 Active, or Valve 2 Active.	
fault_state	If the status from the associated function block is bad or if the transducer block has determined a problem, the first valve will default to this position.	
fault_state2	If the status from the associated function block is bad or if the transducer block has determined a problem, the second valve will default to this position.	
final_position_value_d	Actual position of the first valve.	
final_position_value_d2	Actual position of the second valve.	
final_value_d	The requested position and status written by a discrete function block for the first valve.	
final_value_d2	The requested position and status written by a discrete function block for the first valve.	
hi_temp_limit	Sets the threshold for the hi_temp alarm	
lo_temp_limit	Sets the threshold for the lo_temp alarm	
maskable_signal	User configurable mask that allows alarms to be linked as discrete parameter.	
mode_blk	The actual, target, permitted, and normal modes of the block.	
module_temp	Displays the ambient temperature of the FPAC module.	
open_lim_switch	Discrete showing state of the open limit switch as seen in Shared Data.	

E

shared_data	The shared data structure used for communication between FOUNDATION Fieldbus Function Blocks and hardware. This is available for debugging and troubleshooting.
sp_d	The discrete setpoint of the first valve.
sp_d2	The discrete setpoint of the second valve.
start_up_state	The initial position of the valve upon startup.
st_rev	The revision level of the static data associated with the function block. To support tracking changes in static parameter attributes, the associated block s static revision parameter will be incremented each time a static parameter attribute value is changed. Also, the associated block s static revision parameter may be incremented if a static parameter attribute is written but the value is not changed.
strategy	The strategy field can be used to identify grouping of blocks. This data is not checked or processed by the block.
supported_modes	Read only parameter that indicates the modes supported by the block.
tag_desc	The user description of the intended application of the block.

Table 29(c) Transducer Block Parameter Descriptions				
Parameter	Description			
travel_time	Westlock reported time needed for the valve to move between limit switches.			
updage_evt	This alert is generated by any change to the static data.			
valve_man_id	The valve manufacturer identification number.			
valve_model_num	The valve model number.			
valve_sn	The valve serial number.			
xd_cal_date	The date of the last positioner calibration.			
xd_cal_loc	The location of last positioner calibration. This describes the physical location at which the calibration was performed.			
xd_cal_who	The name of the person responsible for the last positioner calibration.			
xd_error	One of the error codes defined in section 4.8 xd_error and Block Alarm Subcodes (FF-903 revPS3.0 section 4.8)			
valve_type	The type of the valve as defined in section 4.7 Valve Type (FF-903 revPS3.0 section 4.7)			

Table 30(a)	Discrete Input Parameters			
Parameter	Description			
st_rev	The revision level of the static data associated with the function block. To support tracking changes in static parameter attributes, the associated block s static revision parameter will be incremented each time a static parameter attribute value is changed. Also, the associated block s static revision parameter may be incremented if a static parameter attribute is written but the value is not changed.			
tag_desc	The user description of the intended application of the block.			
strategy	The strategy field can be used to identify grouping of blocks This data is not checked or processed by the block.			
alert_key	The identification number of the plant unit. This information may be used in the host for sorting alarms, etc.			
mode_blk	The actual, target, permitted, and normal modes of the block.			
block_err	This parameter reflects the error status associated with the hardware or software components associated with a block. It is a bit string, so that multiple errors may be shown.			
pv_d	Either the primary discrete value for use in executing the function, or a process value associated with it. May also be calculated from the readback_d value of a DO block.			
out_d	The primary discrete value calculated as a result of executing the function.			
simulate_d	Allows the transducer discrete input or output to the block to be manually supplied when simulate is enabled. When simulation is disabled, the simulate value and status track the actual value and status.			
xd_state	Index to the text describing the states of a discrete for the value obtained from the transducer.			
out_state	Index to the text the states of a discrete			

Table 30(b) Di	screte Input Parameters
Parameter	Description
grant_deny	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
io_opts	Options which the user may select to alter input and output block processing.
status_opts	Options which the user may select in the block processing of status.
channel	The number of the logical hardware channel that is connected to this I/O block. This information defines the transducer to be used going to or from the physical world.
pv_time	Time constant of a single exponential filter for the PV, in seconds.
field_val_d	Raw value of the field device discrete input, with a status reflecting the Transducer condition.
update_evt	This alert is generated by any change to the static data.

block_alm	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the	
	Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.	
alarm_sum	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.	
ack_option	Selection of whether alarms associated with the block will be automatically acknowledged.	
disc_pri	Priority of the discrete alarm.	
disc_lim	State of discrete input which will generate an alarm.	
disc_alm	The status and time stamp associated with the discrete alarm.	
xducer_val_d	The value and status received from the transducer block on the selected channel.	
block_alms_act	Enumerations of the active blocks alarms for improved debugging.	
supported_modes	The modes supported by the block.	

5.4 Discrete Output Parameters

Table 31(a) Discrete Output Parameters				
Parameter	Description			
st_rev	The revision level of the static data associated with the function block. To support tracking changes in static parameter attributes, the associated block s static revision parameter will be incremented each time a static parameter attribute value is changed. Also, the associated blocks static revision parameter may be incremented if a static parameter attribute is written but the value is not changed.			
tag_desc	The user description of the intended application of the block.			
strategy	The strategy field can be used to identify grouping of blocks. This data is not checked or processed by the block.			

Table 31(b)	Discrete Output Parameters						
Parameter	Description						
alert_key	The identification number of the plant unit. This information may be used in the host for sorting alarms, etc.						
mode_blk	The actual, target, permitted, and normal modes of the block.						
block_err	This parameter reflects the error status associated with the hardware or software components associated with a block. It is a bit string, so that multiple errors may be shown.						
pv_d	Either the primary discrete value for use in executing the function, or a process value associated with it. May also be calculated from the READBACK_D value of a DO block.						
sp_d	The discrete setpoint. The desired value of the output.						
out_d	The primary discrete value calculated as a result of executing the function.						
simulate_d	Allows the transducer discrete input or output to the block to be manually supplied when imulate is enabled. When simulation is disabled, the simulate value and status track the ctual value and status.						
pv_state	Index to the text describing the states of a discrete for the value obtained from the transducer.						
xd_state	Index to the text describing the states of a discrete output.						
grant_deny	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.						
io_opts	Options which the user may select to alter input and output block processing.						
status_opts	Options which the user may select in the block processing of status.						
readback_d	This indicates the readback of the actual discrete valve or other actuator position, in the transducer state. This must be configured through IO_OPTS.						
CAS_IN_D	This parameter is the remote setpoint value of a discrete block, which must come from another Fieldbus block, or a DCS block through a defined link.						
CHANNEL	The number of the logical hardware channel that is connected to this I/O block. This information defines the transducer to be used going to or from the physical world.						
FSTATE_TIME	The time in seconds from detection of fault of the output block remote setpoint to the output action of the block output if the condition still exists.						
FSTATE_VAL_D	The preset discrete SP_D value to use when fault occurs. This value will be used if the I/O option Fault State to value is selected.						
BKCAL_OUT_D	The output value and status provided to an upstream discrete block. This information is used to provide bumpless transfer to closed loop control.						
RCAS_IN_D	Target setpoint and status provided by a supervisory Host to a discrete control or output block.						
SHED_OPT	Defines action to be taken on remote control device timeout.						
RCAS_OUT_D	Block setpoint and status provided to a supervisory Host for back calculation and to allow action to be taken under limiting conditions or mode change.						
UPDATE EVT	This alert is generated by any change to the static data.						

Table 31(c) Discrete Output Parameters			
Parameter	Description		
BLOCK_ALM	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.		
XDUCER_VAL_D	The value and status received from the transducer block on the selected channel.		
BLOCK_ALMS_ACT	Enumerations of the active blocks alarms for improved debugging.		
SUPPORTED_MODES	The modes supported by the block.		

Appendix A

FPAC QuickCal Instructions

The following instructions provide for the minimum required configuration of parameters for the FPAC module to operate in the most frequently used applications as listed below.

For a more detailed treatment of configuration options see Section 3 of this document. It is suggested that other parameters listed in Section 5 be configured by the end user to optimize the functionality of the FPAC module for your specific application.

All required parameters of the FPAC module have been configured for "out of the box" factory default operation as a single acting fail close valve unless specific request has been made to the factory for an alternate configuration.

Note

The **restart** parameter in the Resource Block allows the user to return the FPAC module to the factory default settings by selecting the "Restart with factory defaults" option.

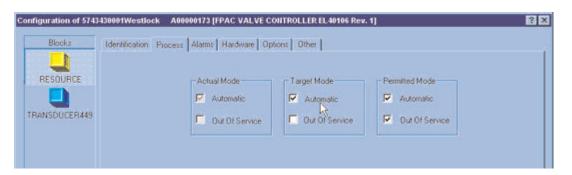
Note

Restarting the device may cause loss of process control. Confirm that you fully understand what the effect on the process will be if the device is being restarted. A device undergoing restart will be offline during the restart process and may force the valve to a preconfigured fault state.

If connecting the FPAC module to a Delta-V DCS for the first time it may be necessary to use the "Restart with factory defaults" option to transition the mode of the Transducer Block (TB) from Manual to OOS as the Delta-V only supports OOS and Auto modes for the TB. Once the TB is in OOS mode you will be able to then transition the TB mode to Auto (see Appendix C for more information).

Note

The graphics and instructions which follow, while specific to the Delta-V DCS, are for the most part ransferable to all FF user interfaces. If you have questions concerning the configuration of the FPAC with your system please contact the factory (see Appendix A).


Single Action Fail Close Valve

Configuring the parameters as follows allows the valve to be Opened or Closed by sending a 1 or 0, respectively, to the DO Block.

Valve position is indicated via the **readback_d** parameter where the status of the Limit Sensors, 1 for Open and 0 for Close, is available. Control schemes may use the readBack value to reflect the actual state of the affected control element. This eliminates the need to use a DI Block for position feedback. See Section 3.3.2 for more information.

Resource Block

• • Under the "Process" tab, confirm **mode_block** is "Auto"

• • Under the "Options" tab, configure the **feature_sel** parameter to enable "Output Readback" (enumeration 0x20)

Block Completion E Reports Manufacturer Specific E Fault State		
Soft Write Lock		
Hard White Lock Dutput Readback	I	
Direct Write	P	-

• • Click "Apply".

0

Note the Warnings Screens and click "OK" if you have determined it is safe to do so.

Note

Transducer Block

• • Select the Transducer Block (TB).

Configuration of 5743	430001Westlock A00000173	[FPAC VAL	VE CONTROLL	LER EL 40105 Rev. 1]			? ×
Blocks	Identification Process Alarm	: Hardware	Options 0	the:			
RESOURCE	1000 C. 100			-			
	- Block Execution	Selected	Available	- Features -	Selected	Available	
TRANSDUCE \$449	Scheduled	E	M	Unicode	Γ	Π	
	Block Completion	m		Reports	M	E.	

• • Under the "Process" tab, set **mode_block** to "OOS"

Blocks Process	Other			
RANSDUCER 449	Actual Mode	Target Mode Automatic Manual Out Of Service	Permitted Mode	

• • Click "Apply".

entiguration of 574 Blocks RESOURCE TRANSDUCER449	Procest Other	Actual Mode Actual Mode Automatic Automatic Marxual Out Of Service Strategy Plant Unit Tag Tag Description	Target Mode Target Mode Automatic Manual OUt Of Service O SCRETE_XDUCER_BLOCK	Permitted Mode Automatic Manual Out Of Service	
	Time: Current	<u> </u>	OK	Cancel Apply	Help

о П

Note the Warnings Screens and click "OK" if you have determined it is safe to do so.

Note

Configure parameter action_element

- • Under the "Others" tab, locate the **action_element** parameter, approximately half way down through the list.
- • From the drop down list select "Single Action" (enumeration = 1) for single acting, spring return valves.

Configuration of 5743	430001Westlock A0	0000173 [FPAC \	VALVE CONTROLLER EL40106 Rev. 1]	2 ×
Blocks	Process Other			
RESOURCE TRANSDUCER449		F Fault St		1
		ACTION_ELEM	Single Action	
	f	CLOSE_LIM_S	Double Action: Reverse Acting Independent, both Normal Acting Independent, TRevense Acting 2Normal Ac Independent, TNormal Acting 2Reverse Ac Independent, both Reverse Acting	
		Status Value	Good_NonCascade: NonSpecific Notl_+ Discrete state 0	
	4			*

• • Under the "Process" tab, set **mode_block** to "Auto"

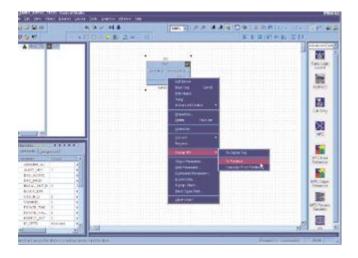
Configuration of 5743	3430001Westlock A00000173 [FPAC VALVE CONTROLLER EL40106 Rev. 1]	2 ×
Blocka	Process Other	
RESOURCE	Actual Mode Automatic Manual Out Of Service Target Mode Permitted Mode Automatic Manual Out Of Service Out Of Service Out Of Service	

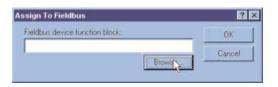
• • Click "Apply".

Blocks F RESOURCE	tocess Other	Actual Mode Automatic Manual Out Of Service Strategy Plant Unit Tag Tag Description	Target Mode Automatic Manual Out Of Service 0 SCRETE_XDUCER_BLOCK	Permitted Mode	
Tir	ne: Current		OK	Cancel Apply R	. Help

0 11

Note the Warnings Screens and click "OK" if you have determined it is safe to do so.


Note


A		
when in AUTO co This operation CO	jury COULD result from configuring the device htrol. ULD change the device output, in MANUAL before selecting OK.	Cancel Help
Service Technician:	ADMINISTRATOR	
Service Reason:	Routine Service	-

Discrete Output Block

• • Right click on the DO and assign device tag to block.

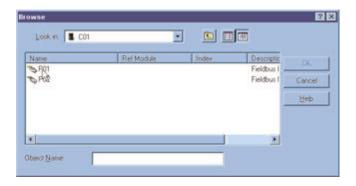
• • Browse to define the path to the desired device tag reference.

NOTE: Double click an item to select it.

Note

• • Select the desired controller.

	The second se	Contraction of the local division of the loc	
Ref Module	Index	Descriptic	- 000
		1	Cancel
			Heb
	The same .	1.000	


• • Select the desired I/O.

Name	Ref Module	Index	Descriptic	06
5NO				Cancel
				Цер

• • Select the desired I/O card.

lame L CQ1	Ref Module	Index	Descriptic Fieldbus H	- OK
25			r Haddaal F	Cancel
				Heb

• • Select the desired port.

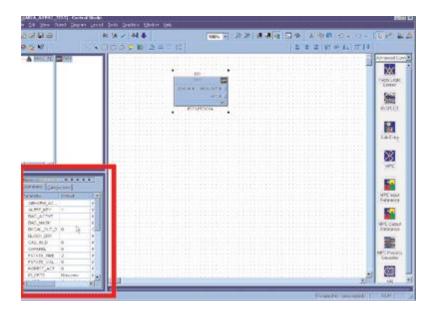
• • Select the desired device.

Look et 🔊 P01				
Name BIFFITEST COTTEST POTI	Ref Module	Index	Descriptic	OK, Cancel Help
e bject <u>N</u> ame			×	

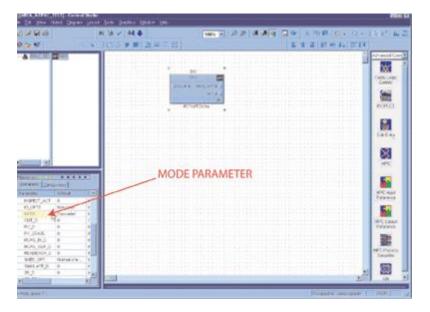
• • Select the desired function block.

lame	Rel Module	Index	Descriptio	100
FFD014		675	Discrete C	
FF0015		705 735	Discrete (Discrete (Cancel
FFD018		765	Discrete (Heb
F FEDUT8		/65	Discrete C	Ū.

• • Click "OK" to accept device tag reference.


Assign To Fieldbus		? 🗙
Fieldbus device function block:		OK ~
FFD014		
	Browte.	Lancel
	[biowie]	

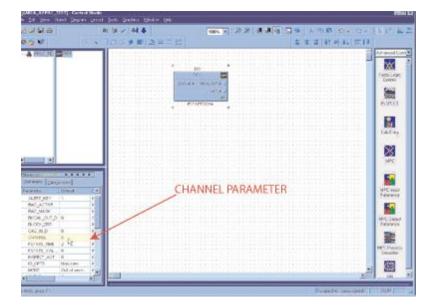
• • Left click DO to view its parameters


NOTE that the DO parameters are no visible in this section of the Control Studio window.

Set mode_block of DO1 to "OOS"

• • Double click on MODE parameter.

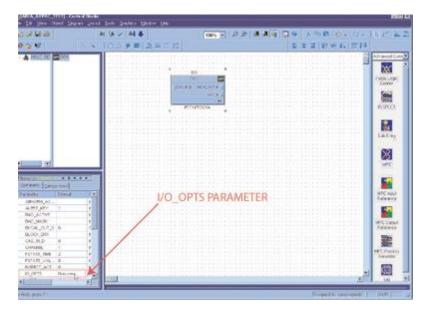
• • Select "Out of Service" from drop down list.


DE Properties		2
Parameter game:		UK.
MODE		
Parameter type:		Cancel
Mode		Eðer
Parameter category		
Operating	*	
200400		
Properties		
- Permitted Modes		
Dui of pervice	🛛 Datcade	
🛛 Marcual	Remote Can	cade
🤗 Auto	E) Renote Dut	
Normal mode	áctual mode.	
Cascade	•	
Larget.		
Cascade	*	

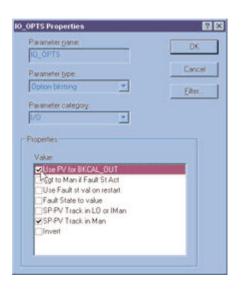
• • Click "OK".

Configure Channel for "Open/Close" (enumeration 1)

• • Double click the **channel** parameter.



• • Enter 1 as the desired Channel number and click "OK".


Parameter pame:	OK,
CHANNEL	
Parameter type:	Cancel
16 bit unsigned attegen	Eiter.
Parameter calegory	
1/0	
mater	
volue.	
1	

Configure DO Block to Utilize ReadBack

• • Double click the **i/o_opts** parameter.

• • Select "Use PV for BKCAL_OUT".

• • Click "OK".

Set Block Mode of DO1 to "Auto" or "CAS"

• • Select "Auto" or "CAS" from the drop down list and click "OK".

ODE Properties	22 EX
Parameter game	06
MODE	 &
Parameter gype:	Cancel
Mode	Etter
Parameter category.	
Operating	<u> </u>
Properties Permitted Modes	
Dut of pervice	🔽 Eascade
P Manual	P Benote Cancade
😣 Auto	E Remote Cut.
Normal mode	Actual mode:
Cascade	•
Target.	
Auto	-

Single Action Fail Open Valve

Configuring the parameters as shown below allows the valve to be Opened or Closed by sending a 0 or 1, respectively, to the DO Block.

The parameter **readback_d** may be used for position feedback as discussed in Section 3.6.2 above.

Configure all parameters as in Section 1 above except the following:

Note

Transducer Block

Configure parameter action_element

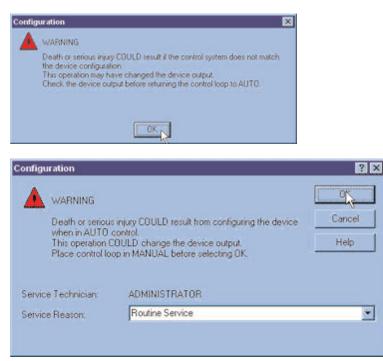
• • Under the "Others" tab, locate the **action_element** parameter, approximately half way down through the list.

• • Select "Single Action, Reverse Acting" (enumeration = 4) for single action, fail open valves

RESURCE	The Faul State Active	<u>ہ</u>
Tree (G	ALD_INPUT_Independent, TRevente Acting Normal Ad- independent both Revente Acting Stetus Ficod_NonCalceder.NorSpecificNati_ value Demonstrate D	× 1 1946

Configuration of 5743430001Wa	estlock A00000173 [FPAC VALVE C	ONTROLLER EL 40106 Rev	s. 1]	2×
RESOURCE	A A A A A A A A A A A A A A A A A A A	Target Mode Automatic Manual Out Of Service	Permitted Mode Automatic Manual Out Of Service	
	Strategy	0		
		SCRETE_XDUCER_BLOCK	C A00000173	

• • Under the "Process" tab, set **mode_block** to "Auto"


TRANSDUCER 449	Automatic Automatic Automatic Automatic Manual Out Of Service Out Of Service Out Of Service Out Of Service Tag DISCRETE_XDUCER_BLOCK_A00000173 Tag Description	
----------------	--	--

• • Click "OK".

0]]

Note the Warnings Screens and click "OK" if you have determined it is safe to do so.

Note

Double Action

Configuring the parameters as follows allows the valve to be Opened or Closed by sending a 1 to the Open DO Block or 0 to the Close DO Block.

Valve position is indicated via the readback_d parameter where the status of the Limit Sensors is as indicated in the following table:

Table 32 – Dis	crete Output -Re	eadBack
Channel Value	Channel Meaning	Enumerations for READBACK_D
2	Close	0, Not Closed
		1, Close
3	Open	0, Not Open
		1, Open

1 for Open and 0 for Close, is available. Control schemes may use the ReadBack value to reflect the actual state of the affected controlled element. This eliminates the need to use a DI Block for position feedback.

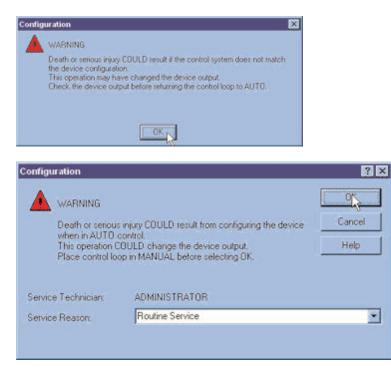
Resource Block

• • Under the "Process" tab, confirm **mode_block** is "Auto"

		ss Alarms Hardware Opfa	NTROLLER EL 40106 Rev. 1)		1
RESOURCE		-Actual Mode	C Target Mode	Permitted Mode	
		Automatic	Automatic	Automatic	
RANSDUCER 449		C Out Of Service		Out Of Service	
	Strategy	0	RCas Time-Out	640000 militec	
	me la la la	0	t and a second second second	640000 milliono	
	Plant Unit		ROut Time-Out	640000 milisec	

• • Under the "Options" tab, configure the **feature_sel** parameter to enable "Out ReadBack" numeration 0x20)

RESOURCE	Block Execution			- Features			
ANSDUCER449		Selected	Available		Selected	Available	
	Scheduled	-	1	Unicode	–	—	
	Block Completion	r.		Reports	N	R	
	Manufacturer Specific	Γ		Fault State			
				Soft Write Lock	—	R	
				Hard Write Lock	Π	Π.	
				Output Readback			
				Direct Write	€ <mark>1</mark>	Γ.	


• • Click "Apply".

RESOURCE	Block Execution			- Features		
NSDUCER449		Selected	Available		Selected	Available
	Scheduled		12	Unicode	Γ	
	Block Completion			Reports	17	M
	Manufacturer Specific			Fault State	E	P
				Soft Write Lock	F	R
				Hard Write Lock		E .
				Output Readback	R	
				Direct Write	C	Ē

0]]

Note the Warnings Screens and click "OK" if you have determined it is safe to do so.

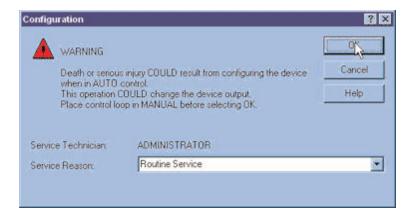
Note

Transducer Block

• • Under the "Process" tab, set **mode_block** to "OOS"

State Port (PPAC VAL State Process)	VE CONTROLLER FL MAIN Rev. 1) Non	5
RESOURCE TRANSCUCERACE	Actual Mode Categories Automatic Marcual Categories Out Disease Categories Out Disease Categories Out Disease	Parallel Mode P Automatic D Manual p Out Di Service
	Change 0 Plant Une 0 Tag DISCHETE_NOUCER_B	1.002 40000172

• • Click "Apply".


Stock : Process (VE CONTROLLER IL 40106 Rev. 1]	
	Actual Mode Target Mode Pernited Mode Automatic Automatic Automatic Manual Manual Manual Out Of Service Out Of Service	
	thungy 0 Flant Unit 0	
	Ting Description	
The Curr	nt P Carcel	doole Bri

Note the Warnings Screens and click "OK" if you have determined it is safe to do so.

	-4-
N	OT P
1 1	ole

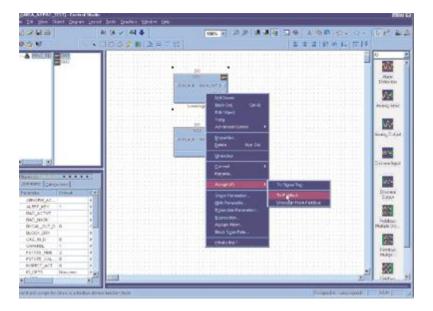
С

Configure parameter action_element

- • Under the "Others" tab, locate the **action_element** parameter, approximately half way down through the list.
- • Select "Double Action" (enumeration = 3) from the drop down list for double acting valves

Books Places	Oter	
RESOURCE RANSECICERAGE	E Invald Mode E Fault State Active E Mode Encr	
	ACTION_ELEM. Double Action.	2
	Thatus Ticost, Mur Canceder MiniSpecific Nati_ Value Discome state 0	

• • Under the "Process" tab, set mode_block to "Auto"

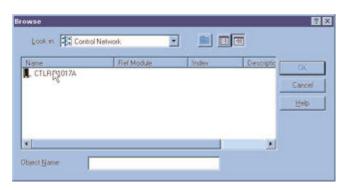

Configuration of 5743	430001Westlock A00000173 [FPAC VALVE CONTROLLER EL40106 Rev. 1]	2 ×
Blocks RESOURCE TRANSDUCER449	Process Other Actual Mode Actual Mode Manual Out Of Service Strategy Other	

• • Click "Apply".

Blocks Process Od RESOURCE RANSDUCER449	Actual Mode Automatic Manual Out Of Service Strategy Plant Unit	Target Mode Automatic Manual Out Of Service 0 ISCRETE_XDUCER_BLOCK	Permitted Mode Automatic Marxual Out Of Service	

Discrete Output Block

• • Right click on DO1 and assign device tag to block.



• • Browse to define the path to the desired device tag reference.

ssign To Fieldbus		20
Fieldbus device function block:		OK
I	[Cancel
	Brows	

- NOTE: Double click an item to select it.
- • Select the desired controller.

• • Select the desired I/O.

Look et 📕 C	TLR-01017A			
Name 1/0	Ref Module	Index	Descriptic	Circel Eleb
d				

• • Select the desired I/O card.

Lookin 👢 C	1 B-010176		?
Vame	Ref Module		escriptic (sk.
10			Cancel
			<u>Heb</u>
bject Name		-	

• • Select the desired port.

Index	Descriptic	City
	Fieldbus I	Cancel
		Help
		Fieldbus I Fieldbus I

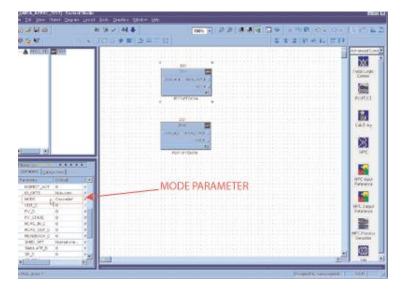
• • Select the desired device.

Look m 🏷 P01	1	. 🧃 🗖		
Anne BIFFITEST ICOTTEST POTT POTT	Ref Module	Index	Descriptic	OK Cancel Help
			×	

• • Select the desired function block.

ame	Ref Module	Index	Descriptic	CH.
FFD014 FFD015		675 705	Discrete C . Discrete C	Cancel
FFD016 FFD018		705 735 765	Discrete (Нер

• • Click "OK" to accept device tag reference.


Assign To Fieldbus	?×
Fieldbus device function block:	OK N
FFD014	
Browse.	Lancel
(Charles of the second s	

- • Follow the same procedure to assign device tag to DO2.
- • Left click DO1 to view it's parameters

12日日			E (A +4 &	1000 1	221444	4	人的教	Q + 12+	R. M.
NG N		. 2	100 9 Bla== 1			1 1	(副))))	中国日本	
A REALERS	- (30)		2012112201200211122					111111111	Advanced Curry
		- 1							No.
			1.11.11.11.11.11.11.11.11.11.11.11.11.1	00					100
									Presy Legit Corese
				COAR DOLLTRY					
				-10.64					1000
			N 10 1 10 10 10 0 2 1 4	P					POMOT.
				Contrast					Marson,
									1.000
				20011					
				DOI: 1					Later
				TANK INCOME.					171100
			1000000	-+1.9					200
100				PU1111-DU16					HPC
	_								
CHILDREN P.		1010							1000
Contractor Can	prim [1121012111111111						
414.000	Detail	011	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						HTC HOM
ABNORM AC.	1.011	1000	100000000000000000000000000000000000000						fermant.
BAD ACTVD	1400	1944	100000000000000000000000000000000000000						11
BLOOK (BOK		134							
ever, Ine	¥	Place.							of Clinit
NECOMBA/WED	biberrice.	the							Distance -
MENROR		P feet							550
MERCIA MA	follower -	1 the							355
MOTATE MOTATE	Di Davide a	1 the							HPLF-MARK
SOLARD, M.		122							Barvider
VERSON	4	100							600

Set mode_block of DO1 to "OOS"

• • Double click on MODE parameter.

• • Select "Out of Service" from drop down list.

Paratteter game:		0K
MODE		-
Parameter gype:		Cancel
Mode	*	Eder
Parameter category		
Operating	×	
Properties		
Permitted Modes		
Dut of pervice	🗟 Catcade	
🖓 Harus	Remote Cance	sde
🖓 Auto	E Rente Dat	
yomal mode.	Actual mode:	
Cascade	•	
[arget		
Cascade		
Out at service Manual	No.	

• • Click "OK".

Parameter game.	0K .
MODE	Q
Parameter type:	Cancel
Mode	- Ehr
Parameter category	
Operand	× .
Propeties	
Permitted Modes	
Dut of gervice	🔽 Carcade
🗭 Marual	🔽 Benote Cancade
😕 Aoro	🗖 Reporte Dat
Normal mode	Actual mode:
Cascade	· .
[arget	
Dut of service	

• • Follow the same procedure to set **mode_block** of DO2 to "OOS"

Configure DO1 Channel for "Open" (enumeration 2)

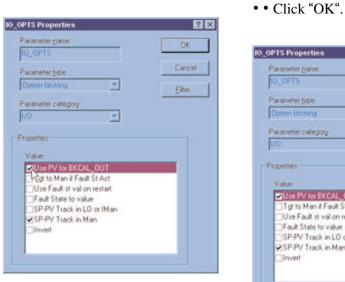
• • Double click the **channel** parameter.

• • Enter 2 as the desired Channel number and click "OK".

Parameter panve.	OK.
CHANNEL	
Parameter type:	Cancel
16 bit unsigned snieger 👱	ERer
Parameter category	19
1/0 💌	
operties	
Volue	
2	

Configure DO2 Channel for "Close" (enumeration 3)

- • Left click DO2.
- • Double click the **channel** parameter as for DO1 above.
- • Enter 3 as the desired Channel number and click "OK".


Parameter game	OK
CHANNEL	
Parameter type	Cancel
16 bit unsigned wieger 🗶	Eiter.
Parameter calegory	-
1/0	
operties -	
Value.	
3	

To utilize ReadBack, configure i/o_opts for "Use PV for BKCAL_OUT" for both DO1 and DO2

• • Double click the **i/o_opts** parameter for DO1.

• • Select "Use PV for BKCAL_OUT".

Parameter pame.	OK
10_0P75	
Parameter type:	Cancel
Option bitatting	Eiter.
Parameter category	
1/0 •	
Noperfies Value	
Use PV for BKCAL_OUT	
☐ T gt to Man il Fault St Act ☐ Use Fault st val on restart	
Fault State to value	
SP-PV Track in LO or IMan	
SP-PV Track in Man	
Invert	

Follow the same procedure to enable ReadBack for DO2.

Set mode_block of DO1 and DO2 to "Auto" or "CAS"

• • Select "Auto" or "CAS" from the drop down list and click "OK".

E Properties	
Parameter game	0K.
MODE	
Parameter gyper	Cance
Mode	- Film
Parameter category.	
Operating	- -
Properties	
Permitted Modes	
Øut of gervice	🗟 Enicade
🖉 Marcual	P. Benote Cancade
오 Auto	E Renote Gia
Normal mode	Actual mode:
Cascade	•
the second s	
[arget	-
Auto	

Appendix B

Connecting the FPAC to the Delta-V DCS for the First Time

The following instructions describe a procedure that may be required the first time the FPAC module is connected to the Delta-V as the Delta-V only supports OOS and Auto modes for the Transducer Block (TB).

This procedure is only necessary if the TB is in Man Mode.

Note

Restarting the device may cause loss of process control. Confirm that you fully understand what the effect on the process will be if the device is being restarted. A device undergoing restart will be offline during the restart process and may force the valve to a preconfigured fault state.

Go to the TB.

• Under the "Process" tab confirm the mode of the FPAC.

If TB is in OOS or Auto mode the device is ready to use and this procedure is not required.

Note

• If TB is in Man proceed to next step.

Go to the Resource Block (RB)

- Under the "Hardware" tab locate the restart parameter.
- From the drop down list select the "Factory Defaults" option.
- Click "Apply" and then "OK" on the warning screen to write to the device.
- Wait for "Run" to appear in the **restart** parameter drop down window.

Go to the TB

• Under the "Process" tab confirm that the TB mode is OOS.

• If the desired operation of the FPAC is a single acting fail close device, transition the TB mode to Auto and proceed with your configuration of the device.

• If the desired operation of the FPAC is other than the factory default (single acting fail close device) proceed to the next step.

Confirm the TB is OOS.

• Under the "Others" tab in the TB, approximately half way down through the list, locate the parameter **action_element**.

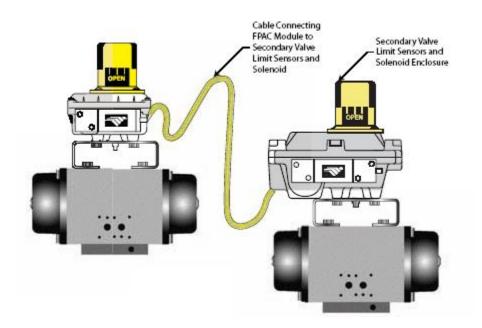
- Select the mode of device operation desired for the FPAC from the drop down list (Double Acting, etc.).
- Click "Apply" and then "OK" on the warning screen to write to the device.
- Transition the TB mode to Auto and proceed with your configuration of the device.

Appendix C

Transducer Block Views

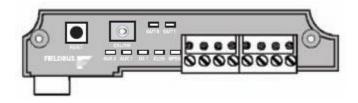
Table 33(a)- Transducer Block Views							
Parameter	Relative Index	VIEW_1	VIEW_2	VIEW_3(1)	VIEW_4(1)	VIEW_4(2)	VIEW_4(3)
st_rev	1	1	2	3	4	4	4
tag_desc	2						
strategy	3				4		
alert_key	4				4		
mode_blk	5	1		3			
block_err	6	1		3			
update_evt	7						
block_alm	8						
xd_error	9	1		3			
final_value_d	10	1		3			
sp_d	11	1		3			
final_position_value_d	12	1		3			
final_value_d	13	1		3			
sp_d2	14	1		3			
final_postion_value_d2	15	1		3			
act_fail_action	16				4		
act_man_id	17				4		
act_model_num	18				4		
act_sn	19				4		
valve_man_id	20					4	
valve_model_num	21					4	

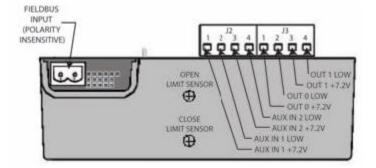
Table 33(b) - Transducer Block	Views						
Parameter	Relative Index	VIEW_1	VIEW_2	VIEW_3(1)	VIEW_4(1)	VIEW_4(2)	VIEW_4(3)
valve_sn	22					4	
valve_type	23					4	
xd_cal_loc	24						4
xd_cal_date	25						4
xd_cal_who	26						4
discrete_state	27	1		3			
maskable_signal	28		2		4		
signal_mask	29				4		
block_alms_act	30						
action_element	31						
open_lim_switch	32						
close_lim_switch	33						
aux_input_1	34						
aux_input_2	35						
start_up_state	36						
fault_state1	37						
fault_state2	38						
collect_cycle_time	39						
cycle_time_collect_type	40						
cycle_time_history	41						
breakaway_time	42						
clear_cycle_count	43						
clear_cycle_count2	44						
cycle_count	45						
cycle_count_alm	46						
cycle_count_pri	47						

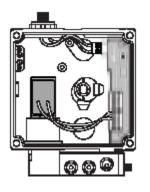

Table 33(c) - Transducer Block Views								
Parameter	Relative	VIEW_1	VIEW_2	VIEW_3(1)	VIEW_4(1)	VIEW_4(2)	VIEW_4(3)	
	Index							
cycle_count2	48							
cycle_time	49							
cycle_time_alm	50							
cycle_time_lim	51							
cycle_time_pri	52							
device_err	53			3				
travel_time	54							
supported_modes	55							
shared_data	56							

Appendix D

Connecting Two Valves to the FPAC


The FPAC will support the operation of two independent valves. The primary valve in Figure 19 is the one that the 7344 housing is mounted on (unit to the left) which is connected to an 877 housing mounted on the secondary valve


(The 877 is a simple switch box with two limit sensors and a solenoid).


Figure 19

The limit sensors for the primary valve are integral to the FPAC module (Figure 20) and the solenoid for the primary valve is typically integral to the 7344 or 7379 network monitor (7344 shown in Figure 21).

Figure 20

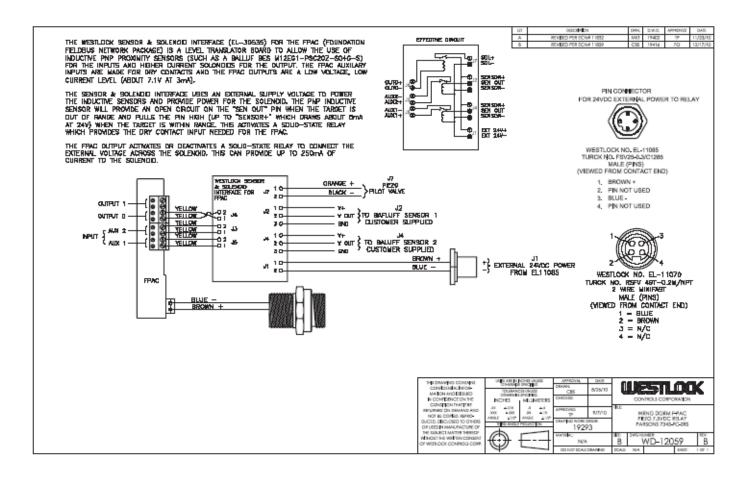


Figure 21

The limit sensors for the secondary valve must be wired to the AUX Inputs of the FPAC module and the solenoid for the secondary valve is must be wired to the OUT 1 terminals of the FPAC (Figure 20).

Appendix E

Wiring Instructions for 7345-FC-SRS Parsons Coax Units

