

The manufacturer may use the mark:

Revision 2.0 June 26, 2018 Surveillance Audit Due July 1, 2021

Certificate / Certificat

Zertifikat / 合格証

WES 1505053 C002

exida hereby confirms that the:

AccuTrak Position Monitor Series: 2200, 2300, 2600, 3000, 3200, 3300, 3400, 3500, 8300, 8400 and 8500

Westlock Controls Saddle Brook, NJ - USA

Have been assessed per the relevant requirements of:

IEC 61508: 2010 Parts 1-7

and meets requirements providing a level of integrity to:

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2, Device

PFD_{AVG} and Architecture Constraints must be verified for each application

Safety Function:

The Position Monitor switch(es) will change it's output when the attached Valve moves to the configured position.

Application Restrictions:

The unit must be properly designed into a Safety Instrumented Function per the Safety Manual requirements.

ANSI Accredited Program
ISO/IEC 17065
PRODUCT CERTIFICATION BODY

Evaluating Assessor

Certifying Assessor

AccuTrak Position Monitor Series: 2200, 2300, 2600, 3000, 3200, 3300, 3400, 3500, 8300, 8400 and 8500

Certificate / Certificat / Zertifikat / 合格証 WES 1505053 C002

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2_H Device

PFD_{AVG} and Architecture Constraints must be verified for each application

Systematic Capability:

These Products have met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with these products must not be used at a SIL level higher than stated.

Random Capability:

The SIL limit imposed by the Architectural Constraints must be met for each element. This Device meets exida criteria for Route 2_H .

Versions:

Series	Switch Quantity and Type (Option Code)			
AccuTrak 2200				
AccuTrak 2300				
AccuTrak 2600				
AccuTrak 3000	1 to 6 SPDT Microswitches (5)			
AccuTrak 3200	. ,			
AccuTrak 3300	1 to 4 DPDT Microswitches (6)			
AccuTrak 3400	1 to 6 P&F Inductive Sensor (7)			
AccuTrak 3500	1 to 6 Magnum Switches (9)			
AccuTrak 8300				
AccuTrak 8400				
AccuTrak 8500				

IEC 61508 Failure Rates1 in FIT2

AccuTrak Series Switch Circuit Qty (Option Code)	λ_{SD}	λ _{SU}	λ_{DD}	$\lambda_{ extsf{DU}}$
1 Switch Circuit (5, 6, 7 or 9)	0	11	0	94
2 Switch Circuits (5, 6, 7 or 9)	0	23	0	119
3 Switch Circuits (5, 6, 7 or 9)	0	34	0	149
4 Switch Circuits (5, 6, 7 or 9)	0	45	0	174
6 Switch Circuits (5, 6, 7 or 9)	0	68	0	229
8 Switch Circuits (6)	0	80	0	239
1 Switch Circuit (5, 6, 7 or 9) w/PVST ³	11	0	86	8
2 Switch Circuits (5, 6, 7 or 9) w/PVST	23	0	110	9
3 Switch Circuits (5, 6, 7 or 9) w/PVST	34	0	139	10
4 Switch Circuits (5, 6, 7 or 9) w/PVST	45	0	163	11
6 Switch Circuits (5, 6, 7 or 9) w/PVST	68	0	216	13
8 Switch Circuits (6) w/PVST	80	0	225	14

¹ Failure Rates listed are only applicable if the switch contacts current is limited to 60% of the switches rated capacity and the end user has added external transient protection if being used with non-resistive loads.

SIL Verification:

The Safety Integrity Level (SIL) of an entire Safety Instrumented Function (SIF) must be verified via a calculation of PFD_{AVG} considering redundant architectures, proof test interval, proof test effectiveness, any automatic diagnostics, average repair time and the specific failure rates of all products included in the SIF. Each subsystem must be checked to assure compliance with minimum hardware fault tolerance (HFT) requirements.

Page 2 of 2

The following documents are a mandatory part of certification:

Assessment Report: WES 15/05-053 R002 V2 R1 (or later)

Safety Manual: TECHUK-78

80 N Main St Sellersville, PA 18960

T-061, V3R1

² FIT = 1 failure / 10⁹ hours

³ PVST = Partial Valve Stroke Test of a final element Device