

Technical Reference Material

Index

Safety Warning Inside Front Co	ver
Mass Spectrometer Helium Leak Certification	1
Subatomic Units of Measure	2
Flow Calculations for GO Regulator Products	3
CGA Connection Chart	
Typical Pressure Regulator Applications	8
Disclaimers Inside Back Co	ver

Ŋ

GO Regulator PO Box 4866 • Spartanburg, SC 29305-4866 (864) 574-7966 www.goreg.com • sales-go@circor.com

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. When selecting products, the total system design must be considered to ensure safe, trouble-free performance. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.

Contact your authorized GO Regulator sales and service representative for information about additional sizes and special alloys.

SAFETY WARNING:

GO Regulator products are designed for installation only by professional suitably qualified licensed system installers experienced in the applications and environments for which the products are intended. These products are intended for integration into a system. Where these products are to be used with flammable or hazardous media, precautions must be taken by the system designer and installer to ensure the safety of persons and property. Flammable or hazardous media pose risks associated with fire or explosion, as well as burning, poisoning or other injury or death to persons and/ or destruction of property. The system designer and installer must provide for the capture and control of such substances from any vents in the product(s). The system installer must not permit any leakage or uncontrolled escape of hazardous or flammable substances. The system operator must be trained to follow appropriate precautions and must inspect and maintain the system and its components including the product(s) and at regular intervals in accordance with timescales recommended by the supplier to prevent unacceptable wear or failure. We recommend that the regulators will be serviced every 5 Years after first installation.

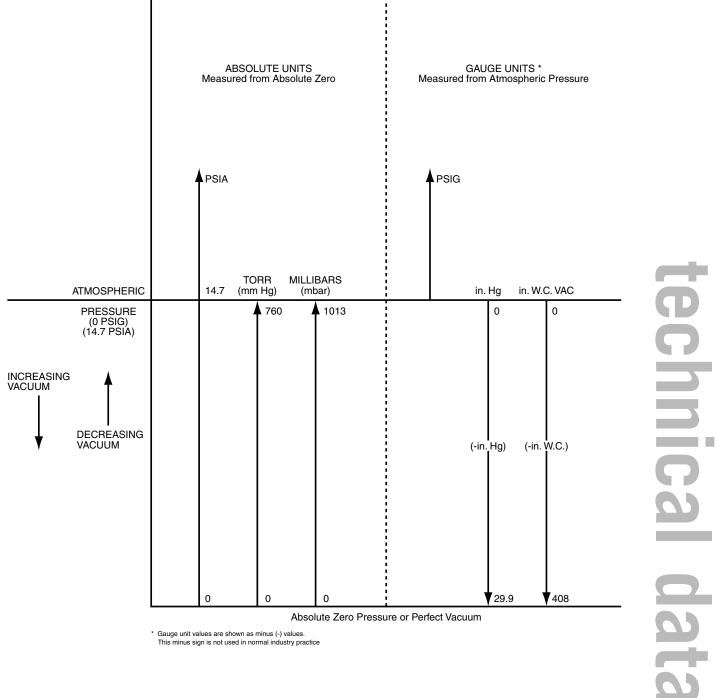
Mass Spectrometer Helium Leak Certification

Mass spectrometer helium leak certification is available on all products manufactured by GO Regulator. With this service, we can provide test certification up to 2×10^{-10} standard cc/sec helium. The choice of inboard or outboard testing is also available.

When requesting test certification, specify the desired leak specification and whether inboard or outboard testing is to be performed.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.


SAFETY WARNING:

HOKE[®] products are designed for installation only by professional suitably qualified licensed system installers experienced in the applications and environments for which the products are intended. These products are intended for integration into a system. Where these products are to be used with flammable or hazardous media, precautions must be taken by the system designer and installer to ensure the safety of persons and property. Flammable or hazardous media pose risks associated with fire or explosion, as well as burning, poisoning or other injury or death to persons and/or destruction of property. The system designer and installer must provide for the capture and control of such substances from any vents in the product(s). The system installer must not permit any leakage or uncontrolled escape of hazardous or flammable substances. The system and its components including the product(s) and at regular intervals in accordance with timescales recommended by the supplier to prevent unacceptable wear or failure. We recommend that the regulators will be serviced every 5 Years after first installation.

1

Subatmospheric Units of Measure

Absolute Zero Pressure or Perfect Vacuum

Gauge unit values are shown as minus (-) values.

This minus sign is not used in normal industry practice

Flow Calculations for GO Regulator Products

Formulas and Examples

Liquid Flow Formulas:

$$C_v = \frac{Q_L \sqrt{S_L}}{\sqrt{\Delta P}} \therefore Q_L = \frac{C_v \sqrt{\Delta P}}{\sqrt{S_L}}$$

Example: Determine liquid flow (assume water) through a regulator in gallons per minute with the following conditions:

Given:

- P₁ = 1000 psia
- $P_2 = 600 \text{ psia}$
- S₁ = 1.0
- C. = 0.8

$$Q_{L}^{v} = \frac{C_{v}\sqrt{\Delta P}}{\sqrt{S_{L}}} = \frac{0.8\sqrt{1000-600}}{\sqrt{1}} = \frac{0.8 \times 20}{1} = 16 \text{ GPM (Water)}$$

Gaseous Flow Formulas: a	$C_v = \frac{Q_g \times 2\sqrt{S_g}}{P_1}$	b $C_v = \frac{Q_g \sqrt{S_g}}{\sqrt{\Delta P \times P_1}}$
--------------------------	--	---

Example: Determine C_v required for a regulator when inlet pressure (P_1) is equal or greater than two times outlet pressure (P_2) and the following items are known:

Given:

 $P_{1} = 1000 \text{ psia}$ $P_{2} = 400 \text{ psia}$ $Q_{g} = 400 \text{ SCFM}$ $S_{g} = 1.0 \text{ (assume air in this example)}$ $C_{v} = \frac{Q_{g} \times 2\sqrt{S_{g}}}{P_{1}} = \frac{400 \times 2}{1000} = 0.8 C_{v}$

* **Caution:** When sizing components for flow applications, attention must also be directed to the size of the plumbing. When flow requirements are at low pressures, the plumbing may be the flow limiting item rather than the regulator or valve.

technical data

Flow Calculations for GO Regulator Products

Definitions:

- C_v : Flow coefficient for regulators and valves that expresses flow capabilities of a unit at full open condition. For liquids, this coefficient is defined as the flow of water at 60° F in gallons per minute at a pressure drop of one psig. For gases, this coefficient is defined as the flow of air at standard conditions in standard cubic feet per minute for each psig of inlet pressure.
- **S**_L: Specific gravity of liquids relative to water, both at standard temperature of 60° F. (Specific gravity of water = $1.0 @ 60^{\circ}$ F).
- S_g : Specific gravity of a gas relative to air; equals the ratio of the molecular weight of the gas to that of air. (Specific gravity of air = 1.0 @ 60° F).
- **P:** Line pressure (psia).
- **P**₁: Inlet pressure expressed in psia.
- **P₂:** Outlet pressure expressed in psia.
- **DP:** Differential pressure $(P_1 P_2)$.
- psia: Absolute pressure which is gauge pressure (PSIG) plus 14.7 (atmospheric pressure).
- **Q**_L: Liquid flow in gallons per minute (GPM).
- **Q**_g: Gas flow in standard cubic feet per minute (SCFM). (At standard conditions of 60° F and 14.7 psia).
- **Q:** Volume flow rate in cubic feet per minute (CFM).
- M: Mass flow rate in pounds per minute (lbs/min.).

GO Regulator

CGA Connection Chart

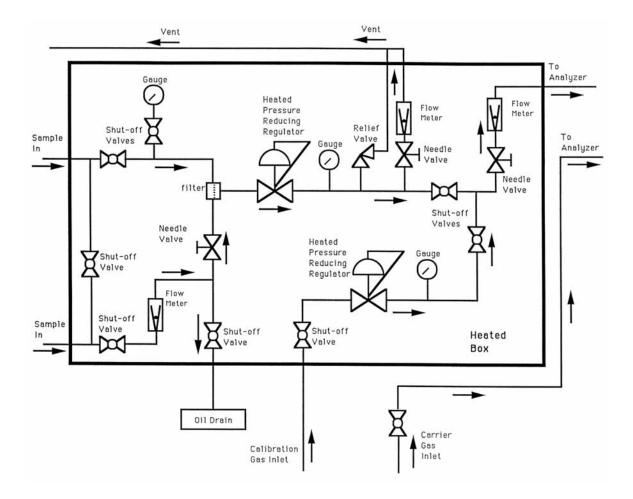
			NECTION
CYLINDER GAS TYPE	CHEMICAL SYMBOL	STANDARD	ALTERNATIVE
Acetylene	C_2H_2	510	300
Air	—	590	346
Allene	CH ₂ :C:CH ₂	510	
Ammonia anydrous	NH₃	240	705
Ammonia (VHP)		660	
Antimony pentafluoride	SbF₅	330	
Argon	Ar	580	
Argon (research grade)	—	590	
Arsine	AsH ₃	350	660
Boron trichloride	BCl₃	660	330
Boron trifluoride	BF ₃	330	
Bromine pentafluoride	BrF₅	670	
Bromine trifluoride	BrF₃	670	
Bromoacetone	BrCH ₂ COCH ₃	330	660
Bromochlorodifluoromethane	CBrCIF ₂	668	660
Bromochloromethane	CH ₂ BrCl	668	660
Bromotrifluoroethylene	BrFC:CF ₂	510	660
Bromotrifluoromethane	CBrF₃	668	320, 660
I, 3–butadiene	CH ₂ :CHCH:CH ₂	510	
Butane	CH ₃ CH ₂ CH ₂ CH ₃	510	
Butenes	CH ₃ CH ₂ CH:CH ₂	510	
Carbon dioxide	CO ₂	320	
Carbon monoxide	CO	350	
Carbonyl fluoride	COF ₂	660	750
Carbonyl sulfide	COS	330	
Chlorine	Cl ₂	660	
Chlorine pentafluoride	CIF₅	670	
Chlorine trifluoride	CIF₃	670	
Chlorodifluoroethane	CH ₃ CCIF ₂	510	660
Chlorodifluoromethane	CHCIF ₂	660	668
Chlorofluoromethane	CH2CIF	510	
Chloroheptafluorocyclobutane	C ₄ F ₇ Cl	660	668
Chloropentafluoroethane	C ₂ CIF ₅	668	660
Chlorotrifluoromethane	CCIF ₃	668	320, 660
Cyanogen	C_2N_2	750	660
Cyanogon chloride	CNCI	750	660
Cyclobutane	C ₄ H ₈	510	
Cyclopropane	C ₃ H ₆	510	
Deuterium	D ₂	350	
Deuterium chloride	DCI	330	
Deuterium fluoride	DF	330	
Deuterium selanide	D ₂ Se	350	330
Deuterium sulfide	D ₂ S	330	
Diborane	B ₂ H ₆	350	
Dibromodifluoroethane	$C_2H_2Br_2F_2$	668	660
Dibormodifluoromethane	CBr ₂ F ₂	668	660
I, 1-difluoroethylene	FCH:CHF	320	
Dichlorosilane	H ₂ SiCl ₂	330	510
Diethylzinc	(C ₂ H ₅) ₂ Zn	750	
Dimethylamine	(CH ₃) ₂ NH	705	240
Dimethyl ether	CH ₃ OCH ₃	510	
2, 2–dimethylpropane	C(CH ₃) ₄	510	
Diphosgene	CICO ₂ CCI ₃	750	660
Ethane	C ₂ H ₆	350	

technical data

5

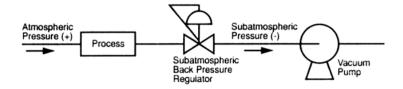
CGA Connection Chart

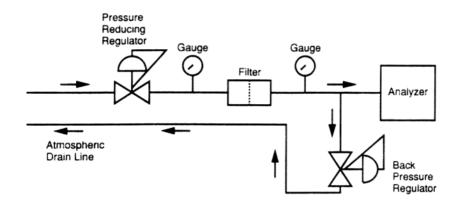
Ethane (research grade)	_	350	
Ethylacetylene	CH ₃ CH ₂ C:CH	510	
Ethylchloide	CH ₃ CH2CI	510	300
Ethyldichloroarsine	$C_2H_5AsCl_2$	750	660
Ethylene	CH2:CH2	350	
Ethylene oxide	C_2H_4O	510	
Ethyl ether	(C ₂ H ₅) ₂ O	510	
Ethyl fluoride	C_2H_5F	750	660
Fluorine	F ₂	679	670
Freon [®] 12 (dichlorodifluoromethane)	CCI2F ₂	660	
Freon [®] 13 (chlorotrifluoromethane)	CCIF ₃	320	
Freon [®] 1381 (bromotrifluoromethane)	CBrF ₃	320	
Freon [®] 14 (tetrafluoromethane)	CF ₄	320	
Freon [®] 22 (chlorodifluoromethane)	CHCIF ₂	660	620
Freon [®] 114 (1, 2–dichlorotetrafluorethane)	CIF ₂ CCCIF ₂	660	
Freon [®] 116 (hexafluoroethane)	C_2F_6	320	
Freon [®] C318 (octafluorocyclobutane)	C ₄ F ₈	660	
Genetron [®] 21 (dichlorofluoromethane)	CHCI ₂ F	660	
Genetron [®] 23 (fluoroform)	CHF₃	320	
Genetron [®] 115 (monochloropentafluoroethane)	BrF ₂ CCF ₃	660	
Genetron [®] 152A (1, 1–difluoroethane)	FCH ₂ CH ₂ F	660	
Germane	GeH ₄	660	750
Helium	He	580	677
Heptafluorobutyronitrile	C_4F_2N	750	660
Hexafluoroacetone	C ₃ F ₈ O	660	330
Hexafluorocyclobutene	C₄F6	750	660
Hexafluorodimethyl peroxide	CF ₃ OOCF ₃	755	660
Hexafluoroethane	C ₂ F ₈	660	668
Hexafluoropropylene	CF ₃ CF:CF ₂	668	660
Hydrogen	H ₂	350	000
Hydrogen bromide	HBr	330	
Hydrogen chloride	HCI	330	
, ,	HCN	750	160
Hydrogen cyanide			
Hydrogen fluoride	HF	330	660
Hydrogen iodide	HI	330	660
Hydrogen selenide	H ₂ Se	350	660
Hydrogen sulfide	H ₂ S	330	
lodine pentafluoride	IF₅	670	
Isobutane	C ₄ H ₁₀	510	
Isobutylene	C ₄ H ₈	510	
Krypton (research grade)	Kr	590	
"Manufactured gas B"	—	350	
"Manufactured gas C"		350	
Lewisite	CICH:CHAsCI ₂	750	660
Methane	CH_4	350	
Methylacetylene	CH₃C:CH	510	
Methyl bromide	CHBr	320	660
3-methyl 1-butene	(CH ₃) ₂ CHCH:CH ₂	510	
Methyl chloride	CH₃CI	660	510
Methyldichloroarsine	CH ₂ AsCl ₂	750	
Methylene fluoride	CH ₂ F ₂	320	
Mehtylethylether	$CH_3OC_2H_5$	510	
Methyl fluoride	CH₃F	350	
Methyl formate	HCOOCH ₃	510	660
Methyl mercaptan	CH₂SH	330	750
Monoethylamine	CH ₃ CH ₂ NH ₂	240	705
Monomethylamine	CH ₃ NH ₂	240	705
Mustard gas	S(C ₂ H ₄ CI) ₂	750	350
Natural gas		350	677
Neon	Ne	590	580
Nickel carbonyl	Ni(CO) ₄	320	750
Nitric oxide	NO	660	750, 160
Nitrogen	No N ₂	580	, 50, 100
Nitrogen (research grade)		590	
Nitrogen dioxide	NO ₂	660	160
Nitrogen trifluoride	NG ₂ NF ₃	679	100
0			160
Nitrogen trioxide	N ₂ O ₃	660	160
Nitrosyl chloride	NOCI	660	330
Nitrosyl fluoride	NOF	330	
Nitrous oxide	N ₂ O	326	
Nitryl fluoride	NO ₂ F	330	
Octafluorocyclobutane	C ₄ F ₈	660	668

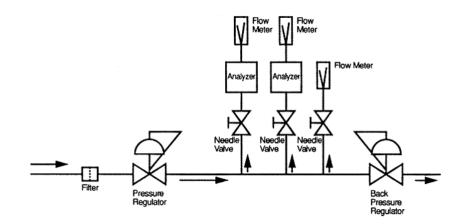

GO Regulator

CGA Connection Chart

Octafluoropropane	C_3F_8	660	668
Oxygen	02	540	
Oxygen difluoride	OF ₂	679	
Ozone	03	660	755
Pentaborane	B ₅ H ₉	660	750
Pentachlorofluoroethane	CCI ₃ CCI ₂ F	668	660
Pentafluoroethane	CF ₃ CHF ₂	668	660
Pentafluoroethyl iodide	CF ₃ CF ₂ I	668	660
Pentafluoropropionitrile	CF ₃ CF ₂ CN	750	660
Perchloryl fluoride	CIO ₃ F	670	
Perfluorobutane	C ₄ F ₁₀	668	
Perfluorobutene-2	C ₄ F ₈	660	
Phenylcarbylamine chloride	C ₆ H ₅ N:CCl ₂	330	660
Phosgene	COCI2	660	000
Phosphine	PH ₃	660	350
Perfluoropropane	1 113	660	550
Phosphorous pentafluoride	 PF ₅	330	
Phosphorous trifluoride	PF ₃	330	
Propane	C ₃ H ₈	510	
•		510	
Propylene	C ₃ H ₆		510
Silane	SiH ₄	350	510
Silicone tetrafluoride	SiF ₄	330	
Stibine	SbH₃	350	660
Sulfur dioxide	SO ₂	660	668
Sulfur hexafluoride	SF ₆	590	668
Sulfur tetrafluoride	SF ₄	330	
Sulfuryl fluoride	SO ₂ F ₂	660	330
1, 1, 1, 2-tetrachlorodifluoroethane	C ₂ Cl ₄ F ₂	668	660
1, 1, 2, 2-tetrafluorochloroethane-1	C ₂ HCIF ₄	668	660
Tetrafluoroethylene	C_2F_4	350	660
Tetrafluorohydrazine	N_2F_4	679	
Tetrafluoromethane	CF ₄	580	320
Tetramethyllead	(CH ₃) ₄ Pb	750	350
Trichlorofluoromethane	CCI₃F	668	660
Trichlorotrifluoroethane	CF₃CCI₃	668	660
Triethylaluminum	(C ₂ H ₅) ₃ AI	750	350
Triethylborane	(C ₂ H ₅) ₃ B	750	350
Trifluoroacetonitrile	CF ₂ CN	750	350
Trifluoroacetyl chloride	CF₃COCI	330	
1, 1, 1-trifluoroethane	CH₃CF₃	510	
Trifluoroethylene	C_2F_3H	510	
Trifluoromethyl hypofluorite	CF₃OF	679	
Trifluoromethyl iodide	CF₃I	668	660
Trimethylamine	(CH₃)₃N	240	705
Trimethylstibine	(CH ₃) ₃ Sb	750	350
Tungsten hexafluoride	WF ₆	330	670
Uranium hexafluoride	UF ₆	330	
Vinyl bromide	C ₂ H ₃ Br	290	510
Vinyl chloride	C ₂ H ₃ Cl	290	510
Vinyl fluoride	C ₂ H ₃ F	320	350
Vinyl methyl ether	C ₂ H ₃ OCH ₃	290	510
Xenon	Xe	580	677
Xenon (research grade)		590	

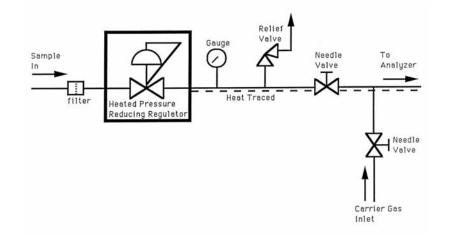


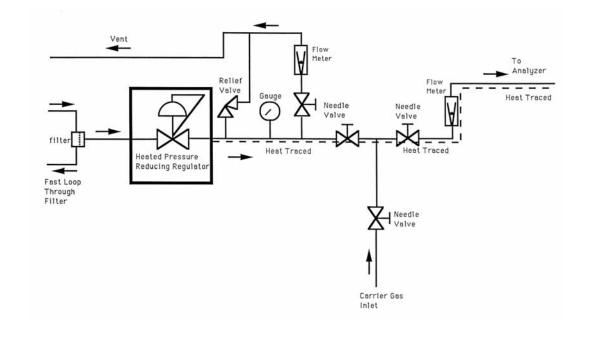

Typical Pressure Regulator Applications

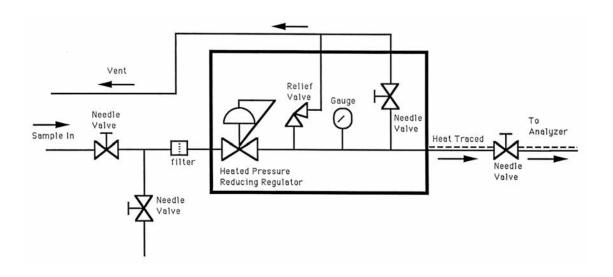


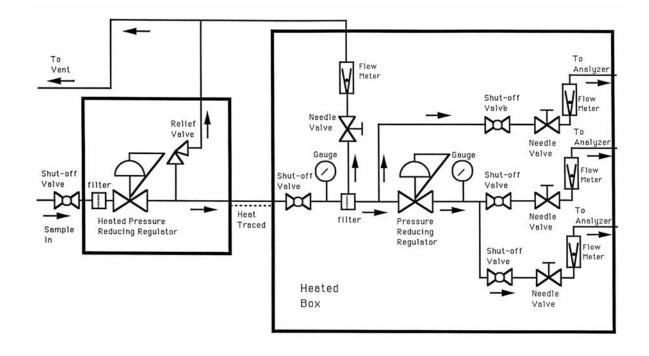

technical data

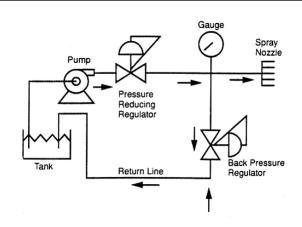
Typical Pressure Regulator Applications








Typical Pressure Regulator Applications



Typical Pressure Regulator Applications

Notes	
	—
	—
	—

GO Regulator Literature and Published Information - Disclaimer:

Catalog, literature and other published information such as drawings, charts and website content is for informational purposes only. Dimensions are for reference only and are subject to change. Each reader of the information should consult with his or her own qualified engineer prior to using the whole or any part of the information.

CIRCOR Instrumentation makes every effort to maintain the accuracy and quality of the information provided in our Catalogs, literature, digital resources and other published information such as drawings, charts, and website content. However, CIRCOR Instrumentation cannot guarantee and assumes no legal liability nor responsibility for the accuracy or completeness of the information provided. The information contained in printed or published literature or digital resources is for general guidance only. You should neither act, nor refrain from action, on the basis of any such information. You should take appropriate professional advice on your particular circumstances because the application of our equipment may vary depending on particular circumstances.

Copyright Disclaimer:

The copyright of all content in this catalog and other published literature or digital resources is owned by CIRCOR Instrumentation and/or the various manufacturers of our equipment. No part of our catalogs, published literature and digital resources may be changed, reproduced, stored in or transmitted on any website or medium without the prior written permission of CIRCOR Instrumentation. Requests to republish any material must be sent to sales-go@circor.com.

In case of any questions or remarks, feel free to contact us.

The GO Regulator Brand is just one product offering manufactured and supplied by CIRCOR Instrumentation (CI) a division of CIRCOR International (NYSE:CIR).

Cl is a global manufacturer that specializes in developing highly engineered, technically superior small bore instrumentation solutions that consistently deliver benchmark performance, quality & safety for general-to-severe service liquid & gas flow applications.

We specialize in small bore instrumentation products up to 2" that deliver benchmark performance quality & safety; provide the broadest array of superior alloy offerings in the market; decades of proven success in a wide range of industries; a roster of "who's who" customers & projects globally; original "Best Solution" engineering & designs; and are focused on continuous improvement in all aspects of our business.

PO Box 4866 Spartanburg, SC 29305-4866 USA +1-864-574-7966 Our headquarters and manufacturing facilities are located at: 405 Centura CT Spartanburg, SC 29303-6603 USA

www.goreg.com sales-go@circor.com

Proudly Distributed By: